First observation of the quantized exciton-polariton field and effect of interactions on a single polariton

Polaritons reach the quantum limit, providing a new and promising platform of strongly coherent and interacting particles. Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories. We report the first experimental demonstration of a genuinely quantum state of the microcavity polariton field, by swapping a photon for a polariton in a two-photon entangled state generated by parametric downconversion. When bringing this single-polariton quantum state in contact with a polariton condensate, we observe a disentangling with the external photon. This manifestation of a polariton quantum state involving a single quantum unlocks new possibilities for quantum information processing with interacting bosons.

[1]  E. Couderc,et al.  The quasiparticle zoo , 2016, Nature Physics.

[2]  V. Savona,et al.  Single photons from coupled quantum modes. , 2010, Physical review letters.

[3]  F. Laussy,et al.  Exciting Polaritons with Quantum Light. , 2015, Physical review letters.

[4]  Fabio Sciarrino,et al.  All-optical implementation of collision-based evolutions of open quantum systems , 2018, Scientific Reports.

[5]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[6]  S. Maier,et al.  Room-temperature superfluidity in a polariton condensate , 2016, Nature Physics.

[7]  Paul G. Kwiat,et al.  Photonic State Tomography , 2005 .

[8]  Quantum Complementarity of Microcavity Polaritons , 2004, cond-mat/0411314.

[9]  M. Steger,et al.  Observation of quantum depletion in a non-equilibrium exciton–polariton condensate , 2019, Nature Communications.

[10]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[11]  A. Alodjants,et al.  Qubits based on polariton Rabi oscillators. , 2014, Physical review letters.

[12]  Gil Refael,et al.  Topological Polaritons , 2014, 1406.4156.

[13]  Francesco Tassone,et al.  Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons , 1999 .

[14]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[15]  Christian Junge,et al.  Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom , 2014, Nature Photonics.

[16]  A. Clerk,et al.  Antibunching and unconventional photon blockade with Gaussian squeezed states , 2014, 1410.6510.

[17]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2009 .

[18]  Norbert Kalb,et al.  A quantum gate between a flying optical photon and a single trapped atom , 2014, Nature.

[19]  Nonlinear fluctuations and dissipation in matter revealed by quantum light , 2015, 1505.00894.

[20]  An electrically pumped polariton laser , 2013, CLEO 2013.

[21]  I. Rabi Space Quantization in a Gyrating Magnetic Field , 1937 .

[22]  Michael Schrapp,et al.  Climbing the Jaynes–Cummings ladder by photon counting , 2011, 1104.3564.

[23]  S. Koch,et al.  Quantum-optical spectroscopy of semiconductors , 2006 .

[24]  M. Kamp,et al.  Exciton-polariton trapping and potential landscape engineering , 2015, Reports on progress in physics. Physical Society.

[25]  B. Deveaud Polariton interactions in semiconductor microcavities , 2016 .

[26]  F. Laussy,et al.  Ultrafast Control and Rabi Oscillations of Polaritons. , 2014, Physical review letters.

[27]  M. S. Skolnick,et al.  Collective fluid dynamics of a polariton condensate in a semiconductor microcavity , 2009, Nature.

[28]  M. S. Skolnick,et al.  Intrinsic decoherence mechanisms in the microcavity polariton condensate. , 2008, Physical review letters.

[29]  M. Amthor,et al.  An electrically pumped polariton laser , 2013, Nature.

[30]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[31]  Stephan Dürr,et al.  Optical π phase shift created with a single-photon pulse , 2015, Science Advances.

[32]  A. Lemaître,et al.  Bunching visibility of optical parametric emission in a semiconductor microcavity , 2012 .

[33]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[34]  Radim Filip,et al.  Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states. , 2011, Physical review letters.

[35]  S. F. Covre da Silva,et al.  Quantum hydrodynamics of a single particle , 2019, Light, science & applications.

[36]  D. Ballarini,et al.  All-optical polariton transistor , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[37]  F. Laussy,et al.  Polaritonic Rabi and Josephson Oscillations , 2016, Scientific Reports.

[38]  Cristiano Ciuti,et al.  Polariton quantum blockade in a photonic dot , 2006 .

[39]  D. Ritchie,et al.  Dark Solitons in High Velocity Waveguide Polariton Fluids. , 2017, Physical review letters.

[40]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[41]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[42]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[43]  Detuning-Controlled Internal Oscillations in an Exciton-Polariton Condensate. , 2015, Physical review letters.

[44]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[45]  S. Brodbeck,et al.  Coherent polariton laser , 2016, 1602.00663.

[46]  Bastian Hacker,et al.  A photon–photon quantum gate based on a single atom in an optical resonator , 2016, Nature.

[47]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[48]  Cristiano Ciuti,et al.  25pRB-4 On the origin of strong photon antibunching in weakly nonlinear photonic molecules , 2010, 1007.1605.

[49]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[50]  A. Lemaître,et al.  Polariton-generated intensity squeezing in semiconductor micropillars , 2014, Nature Communications.

[51]  J. O'Brien Optical Quantum Computing , 2007, Science.