Receiver functions from seismic interferometry: a practical guide

IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science Foundation under Cooperative Agreement EAR-1261681. We thank the universities of Oregon, California at Berkeley, Rice and the Earthscope program of the National Science Foundation for acquiring and providing the FAME waveform data. B.T. was funded by a Delegation CNRS and Conge pour Recherches et Conversion Thematique from the Universite de Lyon to visit the Research School of Earth Sciences (RSES), The Australian National University (ANU). We thank the CNRS, the Universite de Lyon, and ANU, for providing the funding and research environment.

[1]  P. Audet,et al.  Fluid pressure and shear zone development over the locked to slow slip region in Cascadia , 2018, Science Advances.

[2]  M. Bostock Seismic waves converted from velocity gradient anomalies in the Earth’s upper mantle , 1999 .

[3]  G. Hetényi Evolution of deformation of the Himalayan prism: from imaging to modelling , 2007 .

[4]  S. Rondenay Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves , 2009 .

[5]  Lupei Zhu,et al.  Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves , 2000 .

[6]  R. T. Lacoss,et al.  ESTIMATION OF SEISMIC NOISE STRUCTURE USING ARRAYS , 1969 .

[7]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[8]  Michael G. Bostock,et al.  Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing , 2009, Nature.

[9]  B. Kennett,et al.  Improved inversion for seismic structure using transformed, S‐wavevector receiver functions: Removing the effect of the free surface , 2003 .

[10]  L. Smekal,et al.  Spectral functions and dynamic critical behavior of relativistic $Z_2$ theories , 2020, 2007.03374.

[11]  Michael G. Bostock,et al.  Multiparameter two-dimensional inversion of scattered teleseismic body waves 3. Application to the Cascadia 1993 data set , 2001 .

[12]  Martin Schimmel,et al.  Noise reduction and detection of weak, coherent signals through phase-weighted stacks , 1997 .

[13]  Charles J. Ammon,et al.  Iterative deconvolution and receiver-function estimation , 1999 .

[14]  Z. Guan,et al.  An investigation on slowness‐weighted CCP stacking and its application to receiver function imaging , 2017 .

[15]  Weijia Sun,et al.  Receiver structure from teleseisms: Autocorrelation and cross correlation , 2016 .

[16]  L. P. Vinnik,et al.  Detection of waves converted from P to SV in the mantle , 1977 .

[17]  R. Hyndman,et al.  An inverted continental Moho and serpentinization of the forearc mantle , 2002, Nature.

[18]  C. Chapman Fundamentals of Seismic Wave Propagation: Frontmatter , 2004 .

[19]  Victor C. Tsai,et al.  Seismic interferometry with antipodal station pairs , 2013 .

[20]  H. Gurrola,et al.  Wavefield iterative deconvolution to remove multiples and produce phase specific Ps receiver functions , 2018 .

[21]  B. Reynard,et al.  Deep crustal fracture zones control fluid escape and the seismic cycle in the Cascadia subduction zone , 2017 .

[22]  R. Aster,et al.  A rootless rockies—Support and lithospheric structure of the Colorado Rocky Mountains inferred from CREST and TA seismic data , 2013 .

[23]  T. Lay,et al.  Modern Global Seismology , 1995 .

[24]  F. Cotton,et al.  The nature of noise wavefield and its applications for site effects studies A literature review , 2006 .

[25]  B. Schmandt,et al.  P and S Wave Receiver Function Imaging of Subduction With Scattering Kernels , 2017 .

[26]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[27]  Charles A. Langston,et al.  Structure under Mount Rainier, Washington, inferred from teleseismic body waves , 1979 .

[28]  Kees Wapenaar,et al.  Synthesis of an inhomogeneous medium from its acoustic transmission response , 2003 .

[29]  Jon F. Claerbout,et al.  Synthesis of a layered medium from its acoustic transmission response , 1968 .

[30]  R. Hyndman,et al.  Relationship between the Cascadia fore‐arc mantle wedge, nonvolcanic tremor, and the downdip limit of seismogenic rupture , 2014 .

[31]  J. Cassidy,et al.  Numerical experiments in broadband receiver function analysis , 1992, Bulletin of the Seismological Society of America.

[32]  A. Curtis,et al.  Generalised receiver functions and seismic interferometry , 2012 .

[33]  R. Nowack,et al.  Northward thinning of Tibetan crust revealed by virtual seismic profiles , 2009 .

[34]  Michel Campillo,et al.  Emergence of body waves from cross-correlation of short period seismic noise , 2012 .

[35]  B. Kennett,et al.  Crustal properties from seismic station autocorrelograms , 2013 .

[36]  R. Allen,et al.  Cascadia subduction slab heterogeneity revealed by three‐dimensional receiver function Kirchhoff migration , 2017 .

[37]  C. H. Chapman,et al.  Yet another elastic plane-wave, layer-matrix algorithm , 2003 .

[38]  K. Wapenaar,et al.  Extraction of P-wave reflections from microseisms , 2011 .

[39]  H. Tkalčić,et al.  On the feasibility and use of teleseismic P wave coda autocorrelation for mapping shallow seismic discontinuities , 2017 .

[40]  I. Tibuleac,et al.  Crust-mantle boundary reflectors in Nevada from ambient seismic noise autocorrelations , 2012 .

[41]  B. Kennett,et al.  Seismic Wave Propagation in Stratified Media , 1983 .

[42]  Richard M. Allen,et al.  Three-dimensional pre-stack depth migration of receiver functions with the fast marching method: a Kirchhoff approach , 2016 .

[43]  R. Hilst,et al.  Removing source-side scattering for virtual deep seismic sounding (VDSS) , 2013 .

[44]  B. Knapmeyer‐Endrun,et al.  Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations , 2018 .

[45]  G. Abers,et al.  Imaging the source region of Cascadia tremor and intermediate-depth earthquakes , 2009 .

[46]  Masayuki Kikuchi,et al.  Inversion of complex body waves , 1982 .

[47]  A. Levander,et al.  Asthenospheric flow and lithospheric evolution near the Mendocino Triple Junction , 2012 .

[48]  Charles J. Ammon,et al.  The isolation of receiver effects from teleseismic P waveforms , 1991, Bulletin of the Seismological Society of America.

[49]  Rongjiang Wang,et al.  A note on the equivalence of three major propagator algorithms for computational stability and efficiency , 2012 .

[50]  Robert W. Clayton,et al.  Source shape estimation and deconvolution of teleseismic bodywaves , 1976 .

[51]  A. Derode,et al.  Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves , 2005 .

[52]  Peter Gerstoft,et al.  P‐waves from cross‐correlation of seismic noise , 2005 .

[53]  Mei Jiang,et al.  Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet , 2004 .

[54]  J. Sheng,et al.  Interferometric/daylight seismic imaging , 2004 .

[55]  Michel Campillo,et al.  High-Resolution Surface-Wave Tomography from Ambient Seismic Noise , 2005, Science.

[56]  J. Nábělek,et al.  Deconvolution of teleseismic body waves for enhancing structure beneath a seismometer array , 1999, Bulletin of the Seismological Society of America.

[57]  Barbara Romanowicz,et al.  Fundamentals of Seismic Wave Propagation , 2005 .

[58]  Zhongwen Zhan,et al.  Extracting seismic core phases with array interferometry , 2013 .

[59]  K. Wapenaar,et al.  Global‐phase seismic interferometry unveils P‐wave reflectivity below the Himalayas and Tibet , 2012 .

[60]  B. Kennett,et al.  Evolution of the correlation wavefield extracted from seismic event coda , 2018, Physics of the Earth and Planetary Interiors.

[61]  B. Wood,et al.  410 km discontinuity sharpness and the form of the olivine α-β phase diagram , 1996 .

[62]  Weijia Sun,et al.  Mid‐lithosphere discontinuities beneath the western and central North China Craton , 2017 .

[63]  M. Salmon,et al.  Stacking autocorrelograms to map Moho depth with high spatial resolution in southeastern Australia , 2015 .

[64]  B. Kennett Lithosphere–asthenosphere P-wave reflectivity across Australia , 2015 .

[65]  Y Nakamura,et al.  A METHOD FOR DYNAMIC CHARACTERISTICS ESTIMATION OF SUBSURFACE USING MICROTREMOR ON THE GROUND SURFACE , 1989 .

[66]  J. Brune Tectonic stress and the spectra of seismic shear waves from earthquakes , 1970 .

[67]  G. E. Randall,et al.  Efficient calculation of differential seismograms for lithospheric receiver functions , 1989 .

[68]  Yingjie Yang,et al.  Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements , 2007 .

[69]  R. Hilst,et al.  Thick crust beneath the Ordos plateau: Implications for instability of the North China craton , 2012 .

[70]  Hiroshi P. Sato,et al.  Interferometric seismic imaging of crustal structure using scattered teleseismic waves , 2007 .

[71]  R. Nowack,et al.  Seismic body-wave interferometry using noise autocorrelations for crustal structure , 2016 .