Machine learning-assisted computational exploration of the optimal loading of IL in IL/COF composites for carbon dioxide capture

The “volumetric loading ratio” is proposed as a descriptor for regulating the IL loading of IL/COF composites. IL and COFs can form CO2 favorable “wire-tube” and “wall-arm” type structures in COFs with pore sizes <10 Å and ≥10 Å, respectively.

[1]  Alper Uzun,et al.  Integrating Molecular Simulations with Machine Learning Guides in the Design and Synthesis of [BMIM][BF4]/MOF Composites for CO2/N2 Separation , 2023, ACS applied materials & interfaces.

[2]  Alper Uzun,et al.  Incorporation of a pyrrolidinium-based ionic liquid/MIL-101(Cr) composite into Pebax sets a new benchmark for CO2/N2 selectivity , 2023, Separation and Purification Technology.

[3]  Qingyuan Yang,et al.  Solubility‐Boosted Molecular Sieving‐Based Separation for Purification of Acetylene in Core–Shell IL@MOF Composites , 2023, Advanced Functional Materials.

[4]  Shaokun Tang,et al.  Amino-Functionalized Ionic-Liquid-Grafted Covalent Organic Frameworks for High-Efficiency CO2 Capture and Conversion. , 2022, ACS applied materials & interfaces.

[5]  Betar M. Gallant,et al.  Electrochemical methods for carbon dioxide separations , 2022, Nature Reviews Methods Primers.

[6]  A. Knebel,et al.  Low‐Temperature Melting and Glass Formation of the Zeolitic Imidazolate Frameworks ZIF‐62 and ZIF‐76 through Ionic Liquid Incorporation , 2022, Advanced Materials Technologies.

[7]  O. Yaghi,et al.  Covalent Organic Frameworks for Carbon Dioxide Capture from Air. , 2022, Journal of the American Chemical Society.

[8]  Jae Won Lee,et al.  Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms , 2022, Renewable and Sustainable Energy Reviews.

[9]  Alper Uzun,et al.  An Integrated Computational–Experimental Hierarchical Approach for the Rational Design of an IL/UiO‐66 Composite Offering Infinite CO2 Selectivity , 2022, Advanced Functional Materials.

[10]  Weishen Yang,et al.  Assembly of ionic liquid molecule layers on metal-organic framework-808 for CO2 capture , 2022, Chemical Engineering Journal.

[11]  T. M. Gür Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies , 2022, Progress in Energy and Combustion Science.

[12]  Dan Zhao,et al.  Evaluation of Schiff-Base Covalent Organic Frameworks for CO2 Capture: Structure–Performance Relationships, Stability, and Performance under Wet Conditions , 2021, ACS Sustainable Chemistry & Engineering.

[13]  H. Atwater,et al.  Coupling electrochemical CO2 conversion with CO2 capture , 2021, Nature Catalysis.

[14]  Andrew J. Medford,et al.  Efficient Models for Predicting Temperature-Dependent Henry’s Constants and Adsorption Selectivities for Diverse Collections of Molecules in Metal–Organic Frameworks , 2021, The Journal of Physical Chemistry C.

[15]  J. Long,et al.  Deep CCS: Moving Beyond 90% Carbon Dioxide Capture. , 2021, Environmental science & technology.

[16]  Alper Uzun,et al.  Doubling CO2/N2 separation performance of CuBTC by incorporation of 1-n-ethyl-3-methylimidazolium diethyl phosphate , 2021, Microporous and Mesoporous Materials.

[17]  Qingling Liu,et al.  Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization. , 2021, Journal of environmental sciences.

[18]  A. Knebel,et al.  Current Trends in Metal–Organic and Covalent Organic Framework Membrane Materials , 2020, Angewandte Chemie.

[19]  Xiangping Zhang,et al.  Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating , 2020 .

[20]  A. Osman,et al.  Recent advances in carbon capture storage and utilisation technologies: a review , 2020, Environmental Chemistry Letters.

[21]  M. Blunt,et al.  Advances in carbon capture, utilization and storage , 2020, Applied Energy.

[22]  S. Brandani,et al.  Performance-Based Screening of Porous Materials for Carbon Capture , 2020, Chemical reviews.

[23]  Alper Uzun,et al.  CO2 separation from flue gas mixture using [BMIM][BF4]/MOF composites: Linking high-throughput computational screening with experiments , 2020, Chemical Engineering Journal.

[24]  P. Izák,et al.  Post-combustion carbon capture by membrane separation, Review , 2020 .

[25]  Seth M. Cohen,et al.  MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. , 2020, Chemical reviews.

[26]  Jianlong Wang,et al.  Covalent organic frameworks (COFs) for environmental applications , 2019 .

[27]  A. Henni,et al.  Markedly improved CO2 uptake using imidazolium-based ionic liquids confined into HKUST-1 frameworks , 2019, Microporous and Mesoporous Materials.

[28]  Alper Uzun,et al.  MIL‐53(Al) as a Versatile Platform for Ionic‐Liquid/MOF Composites to Enhance CO2 Selectivity over CH4 and N2 , 2019, Chemistry, an Asian journal.

[29]  Alper Uzun,et al.  Improving CO2 Separation Performance of MIL‐53(Al) by Incorporating 1‐n‐Butyl‐3‐Methylimidazolium Methyl Sulfate , 2019, Energy technology.

[30]  D. D. de Azevedo,et al.  Superior Performance of Mesoporous MOF MIL-100 (Fe) Impregnated with Ionic Liquids for CO2 Adsorption , 2019, Journal of Chemical & Engineering Data.

[31]  Hailong Li,et al.  Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges , 2019, Renewable and Sustainable Energy Reviews.

[32]  Chongli Zhong,et al.  Screening and Design of Covalent Organic Framework Membranes for CO2/CH4 Separation , 2018, ACS Sustainable Chemistry & Engineering.

[33]  Chongli Zhong,et al.  Exploring the structure-property relationships of covalent organic frameworks for noble gas separations , 2017 .

[34]  Alper Uzun,et al.  Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications. , 2017, ChemSusChem.

[35]  Peter G. Boyd,et al.  Accurate Characterization of the Pore Volume in Microporous Crystalline Materials , 2017, Langmuir : the ACS journal of surfaces and colloids.

[36]  Alper Uzun,et al.  Improving Gas Separation Performance of ZIF-8 by [BMIM][BF4] Incorporation: Interactions and Their Consequences on Performance , 2017 .

[37]  Yuguang Ma,et al.  CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. , 2017, Chemical reviews.

[38]  Alper Uzun,et al.  [BMIM][PF6] Incorporation Doubles CO2 Selectivity of ZIF-8: Elucidation of Interactions and Their Consequences on Performance. , 2016, ACS applied materials & interfaces.

[39]  J. Silvestre-Albero,et al.  CO2 Adsorption on Ionic Liquid—Modified Cu-BTC: Experimental and Simulation Study , 2015 .

[40]  Tian Lu,et al.  Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. , 2012, Journal of molecular graphics & modelling.

[41]  Haifeng Dong,et al.  Carbon capture with ionic liquids: overview and progress , 2012 .

[42]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[43]  C. Wilmer,et al.  Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration , 2011 .

[44]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[45]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[46]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[47]  Kellie J. Archer,et al.  Empirical characterization of random forest variable importance measures , 2008, Comput. Stat. Data Anal..