An optimal Schwarz preconditioner for a class of parallel adaptive finite elements

A Schwarz-type preconditioner is formulated for a class of parallel adaptive finite elements where the local meshes cover the whole domain. With this preconditioner, the convergence rate of the conjugate gradient method is shown to depend only on the ratio of the second largest and smallest eigenvalues of the preconditioned system. These eigenvalues can be bounded independently of the mesh sizes and the number of subdomains, which proves the proposed preconditioner is optimal. Numerical results are provided to support the theoretical findings.

[1]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[2]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[3]  Randolph E. Bank,et al.  A new parallel domain decomposition method for the adaptive finite element solution of elliptic partial differential equations , 2001, Concurr. Comput. Pract. Exp..

[4]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[5]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[6]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[7]  Randolph E. Bank,et al.  A Domain Decomposition Solver for a Parallel Adaptive Meshing Paradigm , 2004, SIAM J. Sci. Comput..

[8]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[9]  Randolph E. Bank Some variants of the Bank–Holst parallel adaptive meshing paradigm , 2006 .

[10]  Randolph E. Bank,et al.  Mesh Regularization in Bank-Holst Parallel hp-Adaptive Meshing , 2013, Domain Decomposition Methods in Science and Engineering XX.

[11]  J. Mason,et al.  Integration Using Chebyshev Polynomials , 2003 .

[12]  Randolph E. Bank,et al.  A Weakly Overlapping Domain Decomposition Preconditioner for the Finite Element Solution of Elliptic Partial Differential Equations , 2001, SIAM J. Sci. Comput..

[13]  Randolph E. Bank,et al.  Domain Decomposition and hp-Adaptive Finite Elements , 2011 .

[14]  Victor Eijkhout,et al.  The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods , 1991, SIAM Rev..

[15]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[16]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems , 2001, Adv. Comput. Math..

[17]  Michael J. Holst,et al.  A New Paradigm for Parallel Adaptive Meshing Algorithms , 2000, SIAM J. Sci. Comput..

[18]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[19]  Yueqiang Shang,et al.  A parallel finite element variational multiscale method based on fully overlapping domain decomposition for incompressible flows , 2015 .

[20]  Randolph E. Bank,et al.  Convergence analysis of a domain decomposition paradigm , 2006 .

[21]  Yinnian He,et al.  Parallel finite element algorithm based on full domain partition for stationary Stokes equations , 2010 .

[22]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[23]  Haibiao Zheng,et al.  Local and Parallel Finite Element Algorithm Based on the Partition of Unity for Incompressible Flows , 2014, Journal of Scientific Computing.

[24]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[25]  Jinchao Xu,et al.  Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.

[26]  Nathan A. Baker,et al.  Poisson-Boltzmann Methods for Biomolecular Electrostatics , 2004, Numerical Computer Methods, Part D.

[27]  Michael J. Holst,et al.  The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers , 2001, IBM J. Res. Dev..

[28]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[29]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[30]  Axel Voigt,et al.  Adaptive full domain covering meshes for parallel finite element computations , 2007, Computing.

[31]  Gene H. Golub,et al.  Matrix computations , 1983 .

[32]  W. Mitchell The full domain partition approach to distributing adaptive grids , 1998 .

[33]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[34]  William F. Mitchell Adaptive grid refinement and multigrid on cluster computers , 2001, Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001.

[35]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Santiago Badia,et al.  PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION BY CONSTRAINTS FOR HETEROGENEOUS PROBLEMS , 2016 .

[38]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[39]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[40]  P. Strevens Iii , 1985 .

[41]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Nathan A. Baker,et al.  Implicit Solvent Electrostatics in Biomolecular Simulation , 2006 .

[43]  Sébastien Loisel,et al.  Optimized Schwarz and 2-Lagrange Multiplier Methods for Multiscale Elliptic PDEs , 2015, SIAM J. Sci. Comput..

[44]  Hao Li,et al.  Local and Parallel Finite Element Discretizations for Eigenvalue Problems , 2013, SIAM J. Sci. Comput..