WEAK DEPENDENCE: MODELS AND APPLICATIONS TO ECONOMETRICS

In this paper we discuss weak dependence and mixing properties of some popular models. We also develop some of their econometric applications. Autoregressive models, autoregressive conditional heteroskedasticity (ARCH) models, and bilinear models are widely used in econometrics. More generally, stationary Markov modeling is often used. Bernoulli shifts also generate many useful stationary sequences, such as autoregressive moving average (ARMA) or ARCH(∞) processes. For Volterra processes, mixing properties obtain given additional regularity assumptions on the distribution of the innovations. We recall associated probability limit theorems and investigate the nonparametric estimation of those sequences.We first thank the editor for the huge amount of additional editorial work provided for this review paper. The efficiency of the numerous referees was especially useful. The error pointed out in Hall and Horowitz (1996) was the origin of the present paper, and we thank the referees for asking for a more detailed treatment of a correct proof for this paper in Section 2.3. Also we thank Marc Henry and Rafal Wojakowski for a very careful rereading of the paper. An anonymous referee has been particularly helpful in the process of revision of the paper. The authors thank him for his numerous suggestions of improvement, including important results on negatively associated sequences and a thorough update in standard English.

[1]  J. Kingman,et al.  Random walks with stationary increments and renewal theory , 1979 .

[2]  D. McLeish A Maximal Inequality and Dependent Strong Laws , 1975 .

[3]  M. A. Arcones,et al.  Central limit theorems for empirical andU-processes of stationary mixing sequences , 1994 .

[4]  P. Doukhan Mixing: Properties and Examples , 1994 .

[5]  D. Walkup,et al.  Association of Random Variables, with Applications , 1967 .

[6]  P. Doukhan,et al.  A new weak dependence condition and applications to moment inequalities , 1999 .

[7]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[8]  Y. Davydov Mixing Conditions for Markov Chains , 1974 .

[9]  C. Newman Asymptotic independence and limit theorems for positively and negatively dependent random variables , 1984 .

[10]  Donald W. K. Andrews,et al.  Non-strong mixing autoregressive processes , 1984, Journal of Applied Probability.

[11]  Ferenc Móricz,et al.  Moment and Probability Bounds with Quasi-Superadditive Structure for the Maximum Partial Sum , 1982 .

[12]  Harry Haupt,et al.  Nonlinear quantile regression under dependence and heterogeneity , 2003 .

[13]  D. Pollard Limit theorems for empirical processes , 1981 .

[14]  J. Mielniczuk,et al.  The empirical process of a short-range dependent stationary sequence under Gaussian subordination , 1996 .

[15]  J. Petruccelli,et al.  A threshold AR(1) model , 1984, Journal of Applied Probability.

[16]  Hao Yu A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences , 1993 .

[17]  Tuan Pham,et al.  Some mixing properties of time series models , 1985 .

[18]  Prakasa Rao Nonparametric functional estimation , 1983 .

[19]  Donald W. K. Andrews,et al.  Higher‐Order Improvements of a Computationally Attractive k‐Step Bootstrap for Extremum Estimators , 2002 .

[20]  Benedikt M. Pötscher,et al.  Basic structure of the asymptotic theory in dynamic nonlinear econometric models , 1991 .

[21]  M. Rosenblatt Stationary sequences and random fields , 1985 .

[22]  D. Andrews Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables , 1988, Econometric Theory.

[23]  D. Tjøstheim Non-linear time series and Markov chains , 1990, Advances in Applied Probability.

[24]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[25]  D. Surgailis,et al.  Multivariate Appell polynomials and the central limit theorem , 1986 .

[26]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[27]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[28]  D. Pollard,et al.  An introduction to functional central limit theorems for dependent stochastic processes , 1994 .

[29]  Richard S. Varga,et al.  Proof of Theorem 6 , 1983 .

[30]  M. Naranjo A central limit theorem for non-linear functionals of stationary Gaussian vector processes , 1995 .

[31]  P. Phillips Time series regression with a unit root , 1987 .

[32]  Donald W. K. Andrews NON-STRONG MIXING AUTOREGRESSIVE PROCESSES , 1984 .

[33]  Marie Duflo Méthodes récursives aléatoires , 1990 .

[34]  Zhengyan Lin,et al.  Limit Theory for Mixing Dependent Random Variables , 1997 .

[35]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[36]  Magda Peligrad,et al.  On the asymptotic normality of sequences of weak dependent random variables , 1996 .

[37]  Richard S. Varga,et al.  Proof of Theorem 5 , 1983 .

[38]  Peter J. Bickel,et al.  A new mixing notion and functional central limit theorems for a sieve bootstrap in time series , 1999 .

[39]  P. Robinson,et al.  Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric Time Series , 1989 .

[40]  A. Kolmogorov,et al.  On Strong Mixing Conditions for Stationary Gaussian Processes , 1960 .

[41]  R. Syski,et al.  Random Walks With Stationary Increments and Renewal Theory , 1982 .

[42]  R. C. Bradley,et al.  Multilinear forms and measures of dependence between random variables , 1985 .

[43]  R. Tweedie,et al.  Locally contracting iterated functions and stability of Markov chains , 2001, Journal of Applied Probability.

[44]  S. Louhichi Weak convergence for empirical processes of associated sequences , 2000 .

[45]  E. Rio INEGALITES DE MOMENTS POURS LES SUITES STATIONNAIRES ET FORTEMENT MELANGEANTES , 1994 .

[46]  P. Tuan The mixing property of bilinear and generalised random coefficient autoregressive models , 1986 .

[47]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[48]  Limit theorems for iterated random functions by regenerative methods , 2001 .

[49]  G. Collomb Propriétés de convergence presque complète du prédicteur à noyau , 1984 .

[50]  D. Tjøstheim SOME DOUBLY STOCHASTIC TIME SERIES MODELS , 1986 .

[51]  C. Withers Central Limit Theorems for dependent variables. I , 1981 .

[52]  M. Peligrad The convergence of moments in the central limit theorem for -mixing sequences of random variables , 1987 .

[53]  I. Ibragimov,et al.  Some Limit Theorems for Stationary Processes , 1962 .

[54]  Tailen Hsing,et al.  Limit theorems for functionals of moving averages , 1997 .

[55]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[56]  C. Newman,et al.  An Invariance Principle for Certain Dependent Sequences , 1981 .

[57]  M. Rosenblatt A CENTRAL LIMIT THEOREM AND A STRONG MIXING CONDITION. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Veretennikov,et al.  On Polynomial Mixing and Convergence Rate for Stochastic Difference and Differential Equations , 2008 .

[59]  D. Ornstein,et al.  Statistical properties of chaotic systems , 1991 .

[60]  W. Stout Almost sure convergence , 1974 .

[61]  K. Yoshihara Limiting behavior of U-statistics for stationary, absolutely regular processes , 1976 .

[62]  E. Slud,et al.  Central limit theorems for nonlinear functionals of stationary Gaussian processes , 1989 .

[63]  H. Tong A note on a Markov bilinear stochastic process in discrete time , 1981 .

[64]  Critères d'ergodicité géométrique ou arithmétique de modèles linéaires pertubés à représentation markovienne , 1998 .

[65]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[66]  Q. Shao,et al.  Weak convergence for weighted empirical processes of dependent sequences , 1996 .

[67]  Sadayuki Sato,et al.  On the Rising Prices in the Post-war Capitalist Economy , 1991 .

[68]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[69]  Joel L. Horowitz,et al.  Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators , 1996 .

[70]  Eckhard Liebscher,et al.  Strong convergence of sums of α-mixing random variables with applications to density estimation , 1996 .

[71]  Yanqin Fan,et al.  Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series , 1999 .

[72]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[73]  Jérôme Dedecker,et al.  On the functional central limit theorem for stationary processes , 2000 .

[74]  G. Roberts,et al.  Polynomial convergence rates of Markov chains. , 2002 .

[75]  Qi-Man Shao,et al.  A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables , 2000 .

[76]  P. Doukhan,et al.  A triangular central limit theorem under a new weak dependence condition , 2000 .

[77]  Functional central limit theorem for the empirical process of short memory linear processes , 1998 .

[78]  V. Peña,et al.  On Extremal Distributions and Sharp L[sub]p-Bounds For Sums of Multilinear Forms. , 2003 .

[79]  Murray Rosenblatt,et al.  Stochastic Curve Estimation , 1991 .

[80]  H. H. Pu,et al.  Verifying irreducibility and continuity of a nonlinear time series , 1998 .

[81]  V. Volkonskii,et al.  Some Limit Theorems for Random Functions. II , 1959 .

[82]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[83]  C. Fortuin,et al.  Correlation inequalities on some partially ordered sets , 1971 .

[84]  Timo Teräsvirta,et al.  Properties of Moments of a Family of GARCH Processes , 1999 .

[85]  P. A. Nze Critères d'ergodicité de modèles markoviens : estimation non paramétrique sous des hypothèses de dépendance faible , 1994 .

[86]  C. Granger,et al.  An introduction to bilinear time series models , 1979 .

[87]  BILLINGSLEY'S THEOREMS ON EMPIRICAL PROCESSES OF STRONG MIXING SEQUENCES , 1975 .

[88]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[89]  Rustam Ibragimov,et al.  The exact constant in the Rosenthal inequality for random variables with mean zero , 2001 .

[90]  Q. Shao,et al.  Large deviations and law of the iterated logarithm for partial sums normalized by the largest absolute observation , 1996 .

[91]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[92]  Qi-Man Shao,et al.  Maximal Inequalities for Partial Sums of $\rho$-Mixing Sequences , 1995 .

[93]  Sfindor Cs rg The empirical process of a short-range dependent stationary sequence under Gaussian subordination , 2005 .

[94]  M. Peligrad Properties of uniform consistency of the kernel estimators of density and regression functions under dependence assumptions , 1992 .

[95]  P. Major,et al.  Central limit theorems for non-linear functionals of Gaussian fields , 1983 .