Growth of GaAs crystals from Ga-rich melts by the VCz method without liquid encapsulation

[1]  P. Rudolph,et al.  Non-stoichiometric growth of GaAs by the vapour pressure controlled Czochralski (VCz) method without B2O3 encapsulation , 2003 .

[2]  P. Rudolph Non‐stoichiometry related defects at the melt growth of semiconductor compound crystals – a review , 2003 .

[3]  S. Eichler,et al.  A combined carbon and oxygen segregation model for the LEC growth of SI GaAs , 2003 .

[4]  Tsuguo Fukuda,et al.  Crystal Growth Technology , 2003 .

[5]  W. Ulrici,et al.  Vibrational modes of a hydrogen-impurity centre in LEC-GaAs , 2001 .

[6]  P. Rudolph,et al.  Dislocation studies in VCz GaAs by laser scattering tomography , 2001 .

[7]  M. Jurisch,et al.  Precipitate engineering in GaAs studied by laser scattering tomography , 2001 .

[8]  P. Rudolph,et al.  Growth of semi-insulating GaAs crystals in low temperature gradients by using the Vapour Pressure Controlled Czochralski Method (VCz) , 2001 .

[9]  P. Rudolph,et al.  A Study on Carbon Incorporation in Semi‐Insulating GaAs Crystals Grown by the Vapor Pressure Controlled Czochralski Technique (VCz) Part I: Experiments and Results , 2000 .

[10]  Z. Zhang,et al.  Crystal growth. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Hurle A COMPREHENSIVE THERMODYNAMIC ANALYSIS OF NATIVE POINT DEFECT AND DOPANT SOLUBILITIES IN GALLIUM ARSENIDE , 1999 .

[12]  M. Jurisch,et al.  Carbon, oxygen, boron, hydrogen and nitrogen in the LEC growth of SI GaAs : a thermochemical approach , 1999 .

[13]  J. Weyher,et al.  Identification of individual and aligned microdefects in bulk vertical Bridgman- and liquid encapsulated Czochralski-grown GaAs , 1998 .

[14]  M. Tatsumi,et al.  Low dislocation density Si-doped GaAs single crystal grown by the vapor-pressure-controlled Czochralski method , 1997 .

[15]  D. Hurle A mechanism for twin formation during Czochralski and encapsulated vertical Bridgman growth of III V compound semiconductors , 1995 .

[16]  Masatoshi Watanabe,et al.  Influence of Boron in Semi-insulating GaAs Crystals on Their Electrical Activation by Si-Ion Implantation , 1993 .

[17]  K. Urban,et al.  Dislocations and precipitates in gallium arsenide , 1992 .

[18]  C. Frigeri,et al.  Structural and electrical properties ofn-type bulk gallium arsenide grown from non-stoichiometric melts , 1989 .

[19]  I. R. Harris,et al.  Precipitate identification in LEC-grown Si-doped GaAs , 1988 .

[20]  J. Chikawa,et al.  Defects and properties of semiconductors : defect engineering , 1987 .

[21]  J. Weyher,et al.  Selective etching and photoetching of GaAs in CrO3-HF aqueous solutions: III. Interpretation of defect-related etch figures , 1986 .

[22]  H. Gatos,et al.  Fermi energy control of vacancy coalescence and dislocation density in melt-grown GaAs , 1984 .

[23]  M. Kamińska,et al.  Origin of the 0.82‐eV electron trap in GaAs and its annihilation by shallow donors , 1982 .

[24]  D. Stirland,et al.  Arsenic precipitation at dislocations in GaAs substrate material , 1980 .

[25]  I. Saunders Crystal growth '78 , 1979 .

[26]  P. Leung,et al.  Liquid-seal Czochralski growth of gallium arsenide , 1973 .

[27]  J. Mullin,et al.  Pressure balancing: A technique for suppressing dissociation during the melt-growth of compounds , 1972 .

[28]  E. J. Millett,et al.  A syringe crystal puller for materials having a volatile component , 1965 .

[29]  J. B. Mullin,et al.  Liquid encapsulation techniques: The use of an inert liquid in suppressing dissociation during the melt-growth of InAs and GaAs crystals , 1965 .

[30]  E. Metz,et al.  A Technique for Pulling Single Crystals of Volatile Materials , 1962 .

[31]  J. Richards An apparatus for growing single crystals of gallium arsenide , 1957 .