Nonlocal evolution of weighted scale-free networks.

We introduce the notion of globally updating evolution for a class of weighted networks, in which the weight of a link is characterized by the amount of data packet transport flowing through it. By noting that the packet transport over the network is determined nonlocally, this approach can explain the generic nonlinear scaling between the strength and the degree of a node. We demonstrate by a simple model that the strength-driven evolution scheme recently introduced can be generalized to a nonlinear preferential attachment rule, generating the power-law behaviors in degree and in strength simultaneously.