High Order Strong Stability Preserving Time Integrators and Numerical Wave Propagation Methods for H
暂无分享,去创建一个
[1] David I. Ketcheson,et al. Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..
[2] S. Osher,et al. Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .
[3] Rong Wang,et al. Linear Instability of the Fifth-Order WENO Method , 2007, SIAM J. Numer. Anal..
[4] High-resolution finite volume methods for acoustics in a rapidly-varying heterogeneous medium , 1997 .
[5] D. Fyfe,et al. Economical evaluation of Runge-Kutta formulae , 1966 .
[6] Inmaculada Higueras,et al. Characterizing Strong Stability Preserving Additive Runge-Kutta Methods , 2009, J. Sci. Comput..
[7] O. Nevanlinna,et al. Stability of explicit time discretizations for solving initial value problems , 1982 .
[8] Emil M. Constantinescu,et al. Optimal Explicit Strong-Stability-Preserving General Linear Methods , 2010, SIAM J. Sci. Comput..
[9] Colin B. Macdonald,et al. Strong Stability Preserving Two-step Runge-Kutta Methods , 2011, SIAM J. Numer. Anal..
[10] Inmaculada Higueras,et al. Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..
[11] P. Houwen. Explicit Runge-Kutta formulas with increased stability boundaries , 1972 .
[12] Chi-Wang Shu,et al. High order time discretization methods with the strong stability property , 2001 .
[13] A. Robinson,et al. On the practical importance of the SSP property for Runge–Kutta time integrators for some common Godunov‐type schemes , 2005 .
[14] Hyman,et al. Compactons: Solitons with finite wavelength. , 1993, Physical review letters.
[15] Steven J. Ruuth,et al. Optimal Strong-Stability-Preserving Time-Stepping Schemes with Fast Downwind Spatial Discretizations , 2006, J. Sci. Comput..
[16] Zoltán Horváth. On the positivity of matrix-vector products , 2004 .
[17] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[18] Inmaculada Higueras,et al. Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..
[19] Chi-Wang Shu,et al. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.
[20] C. Bogey,et al. Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm , 2006 .
[21] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[22] C. Bogey,et al. A family of low dispersive and low dissipative explicit schemes for flow and noise computations , 2004 .
[23] Willem Hundsdorfer,et al. On monotonicity and boundedness properties of linear multistep methods , 2006, Math. Comput..
[24] Yuzhi Sun,et al. Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..
[25] W. Habashi,et al. 2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics , 1998 .
[26] Steven J. Ruuth,et al. Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods , 2003, Math. Comput. Simul..
[27] N. Bucciantini,et al. An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .
[28] A. Bellen,et al. Contractivity of waveform relaxation Runge-Kutta iterations and related limit methods for dissipative systems in the maximum norm , 1994 .
[29] S. Osher,et al. Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .
[30] José A. Carrillo,et al. Numerical study on hydrodynamic and quasi-neutral approximations for collisionless two-species plasmas , 2004 .
[31] Tim Colonius,et al. PROGRESS IN MODELING AND SIMULATION OF SHOCK WAVE LITHOTRIPSY (SWL) , 2003 .
[32] Toyokatsu Miyashita,et al. Sonic crystals and sonic wave-guides , 2005 .
[33] E. Tadmor,et al. A central differencing simulation of the Orszag-Tang vortex system , 2005, IEEE Transactions on Plasma Science.
[34] L. Baiotti,et al. Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole , 2004, gr-qc/0403029.
[35] Steven J. Ruuth. Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..
[36] K. J. in 't Hout. A note on unconditional maximum norm contractivity of diagonally split Runge-Kutta methods , 1996 .
[37] M. N. Spijker,et al. An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..
[38] Manuel Calvo,et al. Short note: a new minimum storage Runge-Kutta scheme for computational acoustics , 2004 .
[39] Xu-Dong Liu,et al. Positive schemes for solving multi-dimensional hyperbolic systems of conservation laws II , 2003 .
[40] Fernando Reitich,et al. An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics , 2005 .
[41] M. N. Spijker. Stepsize Conditions for General Monotonicity in Numerical Initial Value Problems , 2007, SIAM J. Numer. Anal..
[42] J. V. Sánchez-Pérez,et al. Reflectance properties of two-dimensional sonic band-gap crystals. , 2001, The Journal of the Acoustical Society of America.
[43] Darryl H. Yong,et al. Phase Plane Behavior of Solitary Waves in Nonlinear Layered Media , 2003 .
[44] J. Kraaijevanger,et al. Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems , 1986 .
[45] Fadil Santosa,et al. A dispersive effective medium for wave propagation in periodic composites , 1991 .
[46] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[47] R. Jeltsch,et al. Generalized disks of contractivity for explicit and implicit Runge-Kutta methods , 1979 .
[48] A. Bellen,et al. Unconditional Contractivity in the Maximum Norm of Diagonally Split Runge--Kutta Methods , 1997 .
[49] E. K. Blum,et al. A modification of the Runge-Kutta fourth-order method , 1962 .
[50] S. Osher,et al. Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .
[51] Randall J. LeVeque,et al. Solitary Waves in Layered Nonlinear Media , 2003, SIAM J. Appl. Math..
[52] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[53] Dimitris Drikakis,et al. Effects of preconditioning on the accuracy and efficiency of incompressible flows , 2005 .
[54] Randall J. LeVeque,et al. Finite‐volume methods for non‐linear elasticity in heterogeneous media , 2002 .
[55] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[56] H. Lenferink. Contractivity-preserving implicit linear multistep methods , 1991 .
[57] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[58] Technology of China,et al. A Hybrid Cosmological Hydrodynamic/N-Body Code Based on a Weighted Essentially Nonoscillatory Scheme , 2004 .
[59] Ralf Deiterding,et al. A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows , 2006 .
[60] A. Mignone. The Dynamics of Radiative Shock Waves: Linear and Nonlinear Evolution , 2004 .
[61] Colin B. Macdonald,et al. Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .
[62] Lawrence F. Shampine,et al. Storage Reduction for Runge-Kutta Codes , 1979, TOMS.
[63] Edmondo Bassano,et al. Numerical simulation of thermo‐solutal‐capillary migration of a dissolving drop in a cavity , 2003 .
[64] S. Gill,et al. A process for the step-by-step integration of differential equations in an automatic digital computing machine , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.
[65] J. Verwer,et al. Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .
[66] Chi-Wang Shu,et al. High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..
[67] Christopher A. Kennedy,et al. Third-order 2N-storage Runge-Kutta schemes with error control , 1994 .
[68] Fernando Reitich,et al. High-order RKDG Methods for Computational Electromagnetics , 2005, J. Sci. Comput..
[69] Manuel Calvo,et al. Minimum storage Runge-Kutta schemes for computational acoustics☆ , 2003 .
[70] Willem Hundsdorfer,et al. Monotonicity-Preserving Linear Multistep Methods , 2003, SIAM J. Numer. Anal..
[71] Colin B. Macdonald,et al. A Numerical Study of Diagonally Split Runge–Kutta Methods for PDEs with Discontinuities , 2008, J. Sci. Comput..
[72] Randall J. LeVeque,et al. A Wave Propagation Method for Conservation Laws and Balance Laws with Spatially Varying Flux Functions , 2002, SIAM J. Sci. Comput..
[73] Jörgen Sand. Circle contractive linear multistep methods , 1986 .
[74] R. Lewis,et al. Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .
[75] M. N. Spijker. Contractivity in the numerical solution of initial value problems , 1983 .
[76] R. Fedkiw,et al. A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .
[77] Randall J. LeVeque,et al. Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains , 2008, SIAM Rev..
[78] Lee-Ad Gottlieb,et al. Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods for Linear Constant Coefficient Operators , 2003, J. Sci. Comput..
[79] H. Lenferink,et al. Contractivity preserving explicit linear multistep methods , 1989 .
[80] Z. Horváth,et al. On the positivity step size threshold of Runge-Kutta methods , 2005 .
[81] Randall J. LeVeque,et al. Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .
[82] M. N. Spijker,et al. Computing optimal monotonicity-preserving Runge-Kutta methods , 2022 .
[83] Ian M. Mitchell,et al. A hybrid particle level set method for improved interface capturing , 2002 .
[84] Stanley Osher,et al. Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation , 2005 .
[85] H. Tufo,et al. A spectral finite volume transport scheme on the cubed-sphere , 2007 .
[86] T. E. Simos,et al. Optimized Runge Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics , 2007 .
[87] Z. Horváth,et al. Positivity of Runge-Kutta and diagonally split Runge-Kutta methods , 1998 .
[88] M.Y. Hussaini,et al. Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .
[89] J. Williamson. Low-storage Runge-Kutta schemes , 1980 .
[90] Colin B. Macdonald,et al. Constructing high-order Runge-Kutta methods with embedded strong-stability-preserving pairs , 2003 .
[91] David I. Ketcheson,et al. Computation of optimal monotonicity preserving general linear methods , 2009, Math. Comput..
[92] Sigal Gottlieb,et al. On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations , 2005, J. Sci. Comput..
[93] J. Verwer. Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .
[94] Irene M. Gamba,et al. A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods , 2003 .
[95] M. N. Spijker,et al. Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..
[96] S. Osher,et al. COMPUTATIONAL HIGH-FREQUENCY WAVE PROPAGATION USING THE LEVEL SET METHOD, WITH APPLICATIONS TO THE SEMI-CLASSICAL LIMIT OF SCHRÖDINGER EQUATIONS∗ , 2003 .
[97] P. Londrillo,et al. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .
[98] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[99] Steven J. Ruuth,et al. High-Order Strong-Stability-Preserving Runge-Kutta Methods with Downwind-Biased Spatial Discretizations , 2004, SIAM J. Numer. Anal..
[100] J. Kraaijevanger,et al. Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems , 1986 .
[101] C. Bolley,et al. Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques , 1978 .
[102] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[103] Wei Cai,et al. Discontinuous galerkin time-domain method for GPR simulation in dispersive media , 2005, IEEE Transactions on Geoscience and Remote Sensing.
[104] M. Nallasamy,et al. High-Accuracy Large-Step Explicit Runge-Kutta (HALE-RK) Schemes for Computational Aeroacoustics , 2006 .
[105] Ernst Hairer,et al. Implementation of Implicit Runge-Kutta Methods , 1996 .
[106] J. Kraaijevanger. Contractivity of Runge-Kutta methods , 1991 .
[107] D. Gottlieb,et al. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. , 1991 .
[108] Zhi J. Wang,et al. The Spectral Difference Method for the 2D Euler Equations on Unstructured Grids , 2005 .
[109] Willem Hundsdorfer,et al. High-order linear multistep methods with general monotonicity and boundedness properties , 2005 .
[110] Chengming Huang,et al. Strong stability preserving hybrid methods , 2009 .
[111] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[112] M. Carpenter,et al. Fourth-order 2N-storage Runge-Kutta schemes , 1994 .
[113] Steven J. Ruuth,et al. Two Barriers on Strong-Stability-Preserving Time Discretization Methods , 2002, J. Sci. Comput..
[114] M. N. Spijker,et al. Stepsize restrictions for total-variation-boundedness in general Runge-Kutta procedures , 2005 .
[115] Jianxian Qiu,et al. On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .
[116] Antony Jameson,et al. Spectral Difference Method for Unstructured Grids II: Extension to the Euler Equations , 2007, J. Sci. Comput..
[117] Inmaculada Higueras,et al. On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..
[118] Steven J. Ruuth,et al. A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..
[119] M. N. Spijker,et al. Strong stability of singly-diagonally-implicit Runge--Kutta methods , 2008 .
[120] Chi-Wang Shu,et al. High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..
[121] Randall J. LeVeque,et al. High-resolution finite-volume methods for acoustic waves in periodic and random media , 1999 .
[122] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .