High Order Strong Stability Preserving Time Integrators and Numerical Wave Propagation Methods for H

High Order Strong Stability Preserving Time Integrators and Numerical Wave Propagation Methods for Hyperbolic PDEs

[1]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[2]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[3]  Rong Wang,et al.  Linear Instability of the Fifth-Order WENO Method , 2007, SIAM J. Numer. Anal..

[4]  High-resolution finite volume methods for acoustics in a rapidly-varying heterogeneous medium , 1997 .

[5]  D. Fyfe,et al.  Economical evaluation of Runge-Kutta formulae , 1966 .

[6]  Inmaculada Higueras,et al.  Characterizing Strong Stability Preserving Additive Runge-Kutta Methods , 2009, J. Sci. Comput..

[7]  O. Nevanlinna,et al.  Stability of explicit time discretizations for solving initial value problems , 1982 .

[8]  Emil M. Constantinescu,et al.  Optimal Explicit Strong-Stability-Preserving General Linear Methods , 2010, SIAM J. Sci. Comput..

[9]  Colin B. Macdonald,et al.  Strong Stability Preserving Two-step Runge-Kutta Methods , 2011, SIAM J. Numer. Anal..

[10]  Inmaculada Higueras,et al.  Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..

[11]  P. Houwen Explicit Runge-Kutta formulas with increased stability boundaries , 1972 .

[12]  Chi-Wang Shu,et al.  High order time discretization methods with the strong stability property , 2001 .

[13]  A. Robinson,et al.  On the practical importance of the SSP property for Runge–Kutta time integrators for some common Godunov‐type schemes , 2005 .

[14]  Hyman,et al.  Compactons: Solitons with finite wavelength. , 1993, Physical review letters.

[15]  Steven J. Ruuth,et al.  Optimal Strong-Stability-Preserving Time-Stepping Schemes with Fast Downwind Spatial Discretizations , 2006, J. Sci. Comput..

[16]  Zoltán Horváth On the positivity of matrix-vector products , 2004 .

[17]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[18]  Inmaculada Higueras,et al.  Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..

[19]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[20]  C. Bogey,et al.  Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm , 2006 .

[21]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[22]  C. Bogey,et al.  A family of low dispersive and low dissipative explicit schemes for flow and noise computations , 2004 .

[23]  Willem Hundsdorfer,et al.  On monotonicity and boundedness properties of linear multistep methods , 2006, Math. Comput..

[24]  Yuzhi Sun,et al.  Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..

[25]  W. Habashi,et al.  2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics , 1998 .

[26]  Steven J. Ruuth,et al.  Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods , 2003, Math. Comput. Simul..

[27]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[28]  A. Bellen,et al.  Contractivity of waveform relaxation Runge-Kutta iterations and related limit methods for dissipative systems in the maximum norm , 1994 .

[29]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[30]  José A. Carrillo,et al.  Numerical study on hydrodynamic and quasi-neutral approximations for collisionless two-species plasmas , 2004 .

[31]  Tim Colonius,et al.  PROGRESS IN MODELING AND SIMULATION OF SHOCK WAVE LITHOTRIPSY (SWL) , 2003 .

[32]  Toyokatsu Miyashita,et al.  Sonic crystals and sonic wave-guides , 2005 .

[33]  E. Tadmor,et al.  A central differencing simulation of the Orszag-Tang vortex system , 2005, IEEE Transactions on Plasma Science.

[34]  L. Baiotti,et al.  Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole , 2004, gr-qc/0403029.

[35]  Steven J. Ruuth Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..

[36]  K. J. in 't Hout A note on unconditional maximum norm contractivity of diagonally split Runge-Kutta methods , 1996 .

[37]  M. N. Spijker,et al.  An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..

[38]  Manuel Calvo,et al.  Short note: a new minimum storage Runge-Kutta scheme for computational acoustics , 2004 .

[39]  Xu-Dong Liu,et al.  Positive schemes for solving multi-dimensional hyperbolic systems of conservation laws II , 2003 .

[40]  Fernando Reitich,et al.  An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics , 2005 .

[41]  M. N. Spijker Stepsize Conditions for General Monotonicity in Numerical Initial Value Problems , 2007, SIAM J. Numer. Anal..

[42]  J. V. Sánchez-Pérez,et al.  Reflectance properties of two-dimensional sonic band-gap crystals. , 2001, The Journal of the Acoustical Society of America.

[43]  Darryl H. Yong,et al.  Phase Plane Behavior of Solitary Waves in Nonlinear Layered Media , 2003 .

[44]  J. Kraaijevanger,et al.  Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems , 1986 .

[45]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[46]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[47]  R. Jeltsch,et al.  Generalized disks of contractivity for explicit and implicit Runge-Kutta methods , 1979 .

[48]  A. Bellen,et al.  Unconditional Contractivity in the Maximum Norm of Diagonally Split Runge--Kutta Methods , 1997 .

[49]  E. K. Blum,et al.  A modification of the Runge-Kutta fourth-order method , 1962 .

[50]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[51]  Randall J. LeVeque,et al.  Solitary Waves in Layered Nonlinear Media , 2003, SIAM J. Appl. Math..

[52]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[53]  Dimitris Drikakis,et al.  Effects of preconditioning on the accuracy and efficiency of incompressible flows , 2005 .

[54]  Randall J. LeVeque,et al.  Finite‐volume methods for non‐linear elasticity in heterogeneous media , 2002 .

[55]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[56]  H. Lenferink Contractivity-preserving implicit linear multistep methods , 1991 .

[57]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[58]  Technology of China,et al.  A Hybrid Cosmological Hydrodynamic/N-Body Code Based on a Weighted Essentially Nonoscillatory Scheme , 2004 .

[59]  Ralf Deiterding,et al.  A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows , 2006 .

[60]  A. Mignone The Dynamics of Radiative Shock Waves: Linear and Nonlinear Evolution , 2004 .

[61]  Colin B. Macdonald,et al.  Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .

[62]  Lawrence F. Shampine,et al.  Storage Reduction for Runge-Kutta Codes , 1979, TOMS.

[63]  Edmondo Bassano,et al.  Numerical simulation of thermo‐solutal‐capillary migration of a dissolving drop in a cavity , 2003 .

[64]  S. Gill,et al.  A process for the step-by-step integration of differential equations in an automatic digital computing machine , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[65]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[66]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[67]  Christopher A. Kennedy,et al.  Third-order 2N-storage Runge-Kutta schemes with error control , 1994 .

[68]  Fernando Reitich,et al.  High-order RKDG Methods for Computational Electromagnetics , 2005, J. Sci. Comput..

[69]  Manuel Calvo,et al.  Minimum storage Runge-Kutta schemes for computational acoustics☆ , 2003 .

[70]  Willem Hundsdorfer,et al.  Monotonicity-Preserving Linear Multistep Methods , 2003, SIAM J. Numer. Anal..

[71]  Colin B. Macdonald,et al.  A Numerical Study of Diagonally Split Runge–Kutta Methods for PDEs with Discontinuities , 2008, J. Sci. Comput..

[72]  Randall J. LeVeque,et al.  A Wave Propagation Method for Conservation Laws and Balance Laws with Spatially Varying Flux Functions , 2002, SIAM J. Sci. Comput..

[73]  Jörgen Sand Circle contractive linear multistep methods , 1986 .

[74]  R. Lewis,et al.  Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .

[75]  M. N. Spijker Contractivity in the numerical solution of initial value problems , 1983 .

[76]  R. Fedkiw,et al.  A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .

[77]  Randall J. LeVeque,et al.  Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains , 2008, SIAM Rev..

[78]  Lee-Ad Gottlieb,et al.  Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods for Linear Constant Coefficient Operators , 2003, J. Sci. Comput..

[79]  H. Lenferink,et al.  Contractivity preserving explicit linear multistep methods , 1989 .

[80]  Z. Horváth,et al.  On the positivity step size threshold of Runge-Kutta methods , 2005 .

[81]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[82]  M. N. Spijker,et al.  Computing optimal monotonicity-preserving Runge-Kutta methods , 2022 .

[83]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[84]  Stanley Osher,et al.  Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation , 2005 .

[85]  H. Tufo,et al.  A spectral finite volume transport scheme on the cubed-sphere , 2007 .

[86]  T. E. Simos,et al.  Optimized Runge Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics , 2007 .

[87]  Z. Horváth,et al.  Positivity of Runge-Kutta and diagonally split Runge-Kutta methods , 1998 .

[88]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[89]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[90]  Colin B. Macdonald,et al.  Constructing high-order Runge-Kutta methods with embedded strong-stability-preserving pairs , 2003 .

[91]  David I. Ketcheson,et al.  Computation of optimal monotonicity preserving general linear methods , 2009, Math. Comput..

[92]  Sigal Gottlieb,et al.  On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations , 2005, J. Sci. Comput..

[93]  J. Verwer Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .

[94]  Irene M. Gamba,et al.  A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods , 2003 .

[95]  M. N. Spijker,et al.  Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..

[96]  S. Osher,et al.  COMPUTATIONAL HIGH-FREQUENCY WAVE PROPAGATION USING THE LEVEL SET METHOD, WITH APPLICATIONS TO THE SEMI-CLASSICAL LIMIT OF SCHRÖDINGER EQUATIONS∗ , 2003 .

[97]  P. Londrillo,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .

[98]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[99]  Steven J. Ruuth,et al.  High-Order Strong-Stability-Preserving Runge-Kutta Methods with Downwind-Biased Spatial Discretizations , 2004, SIAM J. Numer. Anal..

[100]  J. Kraaijevanger,et al.  Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems , 1986 .

[101]  C. Bolley,et al.  Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques , 1978 .

[102]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[103]  Wei Cai,et al.  Discontinuous galerkin time-domain method for GPR simulation in dispersive media , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[104]  M. Nallasamy,et al.  High-Accuracy Large-Step Explicit Runge-Kutta (HALE-RK) Schemes for Computational Aeroacoustics , 2006 .

[105]  Ernst Hairer,et al.  Implementation of Implicit Runge-Kutta Methods , 1996 .

[106]  J. Kraaijevanger Contractivity of Runge-Kutta methods , 1991 .

[107]  D. Gottlieb,et al.  The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. , 1991 .

[108]  Zhi J. Wang,et al.  The Spectral Difference Method for the 2D Euler Equations on Unstructured Grids , 2005 .

[109]  Willem Hundsdorfer,et al.  High-order linear multistep methods with general monotonicity and boundedness properties , 2005 .

[110]  Chengming Huang,et al.  Strong stability preserving hybrid methods , 2009 .

[111]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[112]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[113]  Steven J. Ruuth,et al.  Two Barriers on Strong-Stability-Preserving Time Discretization Methods , 2002, J. Sci. Comput..

[114]  M. N. Spijker,et al.  Stepsize restrictions for total-variation-boundedness in general Runge-Kutta procedures , 2005 .

[115]  Jianxian Qiu,et al.  On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .

[116]  Antony Jameson,et al.  Spectral Difference Method for Unstructured Grids II: Extension to the Euler Equations , 2007, J. Sci. Comput..

[117]  Inmaculada Higueras,et al.  On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..

[118]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[119]  M. N. Spijker,et al.  Strong stability of singly-diagonally-implicit Runge--Kutta methods , 2008 .

[120]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[121]  Randall J. LeVeque,et al.  High-resolution finite-volume methods for acoustic waves in periodic and random media , 1999 .

[122]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .