Protein influence on the plasma membrane dielectric properties: in vivo study utilizing dielectric spectroscopy and fluorescence microscopy.

We have investigated the origin of the dielectric response of the plasma membrane of living yeast cells (Saccharomyces cerevisiae) by using radiofrequency dielectric spectroscopy. The cells were genetically engineered to overexpress in the membrane of yeast cells a G protein-coupled receptor--the Sterile2-alpha factor receptor protein (Ste2p)--fused to the green fluorescent protein (GFP). Presence of the Ste2-GFP proteins in the plasma membrane was confirmed by exciting the cells at 476 nm and observing with a confocal microscope the emission characteristic of the GFP from individual cells. The dielectric behavior of cells suspended in KCl solution was analyzed over the frequency range 40 Hz-110 MHz and compared to the behavior of control cells that lacked the ability to express Ste2p. A two-shell electrical cell model was used to fit the data starting from known structural parameters and adjustable electrical phase parameters. The best-fit value for the relative permittivity of the plasma membrane showed no significant difference between cells expressing Ste2p (1.63+/-0.11) and the control cells (1.75+/-0.16). This result confirmed earlier predictions that the dielectric properties of the plasma membrane in the radiofrequency range mostly reflect the properties of the hydrophobic layer of the membrane, which is populated by the hydrocarbon tails of the phospholipids and hydrophobic segments of integral membrane proteins. We discuss ways by which dielectric spectroscopy can be improved to be used for tag-free detection of proteins on the membrane.

[1]  H. Schwan Electrical properties of tissue and cell suspensions. , 1957, Advances in biological and medical physics.

[2]  Koji Asami,et al.  Characterization of heterogeneous systems by dielectric spectroscopy , 2002 .

[3]  Valerică Raicu,et al.  Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. , 2005, The Biochemical journal.

[4]  W. Brownell,et al.  Dielectric Properties of Yeast Cells Expressed With the Motor Protein Prestin , 2005, Journal of biological physics.

[5]  Cesare Cametti,et al.  Dielectric spectroscopy and conductivity of polyelectrolyte solutions , 2004 .

[6]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[7]  H. Coster,et al.  The molecular organisation of bimolecular lipid membranes. The dielectric structure of the hydrophilic/hydrophobic interface. , 1981, Biochimica et biophysica acta.

[8]  Valerica Raicu,et al.  Dielectric properties of rat liver in vivo: a noninvasive approach using an open-ended coaxial probe at audio/radio frequencies , 1998 .

[9]  K. Blumer,et al.  Use of fluorescence resonance energy transfer to analyze oligomerization of G-protein-coupled receptors expressed in yeast. , 2002, Methods.

[10]  S. Marčelja Lipid-mediated protein interaction in membranes. , 1976, Biochimica et biophysica acta.

[11]  Terry C. Chilcott,et al.  Impedance spectroscopy of interfaces, membranes and ultrastructures , 1996 .

[12]  R. Fettiplace,et al.  The thickness, composition and structure of some lipid bilayers and natural membranes , 1971, The Journal of Membrane Biology.

[13]  Kenneth R. Foster,et al.  Dielectric Properties of Tissues , 2008 .

[14]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[15]  A. Irimajiri,et al.  A dielectric theory of "multi-stratified shell" model with its application to a lymphoma cell. , 1979, Journal of theoretical biology.

[16]  Joseph G. Hoffman,et al.  Physical Techniques in Biological Research , 1963 .

[17]  H. Fricke THE ELECTRIC CAPACITY OF SUSPENSIONS WITH SPECIAL REFERENCE TO BLOOD , 1925, The Journal of general physiology.

[18]  A. Irimajiri,et al.  Dielectric monitoring of rouleaux formation in human whole blood: a feasibility study. , 1996, Biochimica et biophysica acta.

[19]  Karl Willy Wagner,et al.  Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen , 1914 .

[20]  R. Clegg Fluorescence resonance energy transfer. , 2020, Current Opinion in Biotechnology.

[21]  Douglas B. Kell,et al.  On the nonlinear dielectric properties of biological systems: Saccharomyces cerevisiae , 1990 .

[22]  R. McGuinness,et al.  Cellular Dielectric Spectroscopy: A Powerful New Approach to Label-Free Cellular Analysis , 2004, Journal of biomolecular screening.

[23]  Charles Polk,et al.  CRC Handbook of Biological Effects of Electromagnetic Fields , 1986 .

[24]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[25]  H. Coster,et al.  The thickness of the hydrophobic and polar regions of glycerol monooleate bilayers determined from the frequency-dependence of bilayer capacitance , 1984 .

[26]  A. K. Solomon,et al.  Advances in Biological and Medical Physics , 1949 .

[27]  Y. Huang,et al.  Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. , 1992, Physics in medicine and biology.

[28]  E. Gheorghiu,et al.  Real-time monitoring of yeast cell division by dielectric spectroscopy. , 1999, Biophysical journal.

[29]  K. Asami,et al.  Dielectric spectroscopy of plant protoplasts. , 1992, Biophysical journal.

[30]  D. Kell,et al.  Dual-frequency excitation : a novel method for probing the nonlinear dielectric properties of biological systems, and its application to suspensions of S. cerevisiae , 1991 .

[31]  P. Becher,et al.  Encyclopedia of emulsion technology , 1983 .

[32]  Herman P. Schwan,et al.  CHAPTER 6 – DETERMINATION OF BIOLOGICAL IMPEDANCES1 , 1963 .

[33]  T. Hanai Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions , 1960 .

[34]  V. Raicu,et al.  Dielectric properties of yeast cells as simulated by the two-shell model. , 1996, Biochimica et biophysica acta.

[35]  Valerica Raicu,et al.  Dielectric properties of rat liver in vivo: analysis by modeling hepatocytes in the tissue architecture , 1998 .

[36]  J. R. Claycomb,et al.  Low-frequency, low-field dielectric spectroscopy of living cell suspensions , 2004 .

[37]  H. Coster,et al.  The molecular organisation of bimolecular lipid membranes. The effect of benzyl alcohol on the structure. , 1977, Biochimica et biophysica acta.

[38]  K Asami,et al.  Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. , 1996, Biophysical journal.

[39]  Bryan L Roth,et al.  G-protein-coupled receptors at a glance , 2003, Journal of Cell Science.

[40]  K. Blumer,et al.  Oligomerization of G-Protein-Coupled Receptors: Lessons from the Yeast Saccharomyces cerevisiae , 2005, Eukaryotic Cell.

[41]  J. R. Claycomb,et al.  Harmonic generation by yeast cells in response to low-frequency electric fields. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Evaluation of a conductometric method to determine the volume fraction of the suspensions of biomembrane-bounded particles , 1975, Experientia.

[43]  H P Schwan,et al.  ELECTRODE POLARIZATION IMPEDANCE AND MEASUREMENTS IN BIOLOGICAL MATERIALS * , 1968, Annals of the New York Academy of Sciences.

[44]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[45]  J. Thorner,et al.  The STE2 gene product is the ligand-binding component of the alpha-factor receptor of Saccharomyces cerevisiae. , 1988, The Journal of biological chemistry.

[46]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[47]  Meng Yang,et al.  Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. , 2005, BioTechniques.

[48]  H. Coster,et al.  The molecular organisation of bimolecular lipid membranes. A study of the low frequency Maxwell-Wagner impedance dispersion. , 1974, Biochimica et biophysica acta.

[49]  E. Vitols,et al.  STUDIES ON THE OXIDATIVE METABOLISM OF SACCHAROMYCES CEREVISIAE , 1961, The Journal of biophysical and biochemical cytology.

[50]  Victoria J Allan,et al.  Light Microscopy Techniques for Live Cell Imaging , 2003, Science.

[51]  Brian Herman,et al.  Fluorescence imaging spectroscopy and microscopy , 1996 .

[52]  H. Fricke,et al.  THE ELECTRIC RESISTANCE AND CAPACITY OF BLOOD FOR FREQUENCIES BETWEEN 800 AND 4½ MILLION CYCLES , 1925, The Journal of general physiology.

[53]  T. Saibara,et al.  Multifrequency method for dielectric monitoring of cold-preserved organs. , 2000, Physics in medicine and biology.