Natural selection. V. How to read the fundamental equations of evolutionary change in terms of information theory

The equations of evolutionary change by natural selection are commonly expressed in statistical terms. Fisher's fundamental theorem emphasizes the variance in fitness. Quantitative genetics expresses selection with covariances and regressions. Population genetic equations depend on genetic variances. How can we read those statistical expressions with respect to the meaning of natural selection? One possibility is to relate the statistical expressions to the amount of information that populations accumulate by selection. However, the connection between selection and information theory has never been compelling. Here, I show the correct relations between statistical expressions for selection and information theory expressions for selection. Those relations link selection to the fundamental concepts of entropy and information in the theories of physics, statistics and communication. We can now read the equations of selection in terms of their natural meaning. Selection causes populations to accumulate information about the environment.

[1]  R. Clausius The Mechanical Theory Of Heat , 1879 .

[2]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[3]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[5]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[6]  G. Carpenter Natural Selection , 1936, Nature.

[7]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[8]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[10]  M. Kimura On the change of population fitness by natural selection2 3 , 1958, Heredity.

[11]  H. Grüneberg,et al.  Introduction to quantitative genetics , 1960 .

[12]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[13]  D. A. Mcquarrie,et al.  Wave mechanics for chemists , 1966 .

[14]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[15]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[16]  George R. Price,et al.  Selection and Covariance , 1970, Nature.

[17]  Kenneth C. W. Kammeyer,et al.  An introduction to population , 1974 .

[18]  G. Price Fisher's ‘fundamental theorem’ made clear , 1972, Annals of human genetics.

[19]  G. Price,et al.  Extension of covariance selection mathematics , 1972, Annals of human genetics.

[20]  K. Popper Objective Knowledge: An Evolutionary Approach , 1972 .

[21]  R. Swinburne OBJECTIVE KNOWLEDGE: AN EVOLUTIONARY APPROACH , 1973 .

[22]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[23]  R. Lande QUANTITATIVE GENETIC ANALYSIS OF MULTIVARIATE EVOLUTION, APPLIED TO BRAIN:BODY SIZE ALLOMETRY , 1979, Evolution; international journal of organic evolution.

[24]  W. Ewens Mathematical Population Genetics , 1980 .

[25]  S. J. Arnold,et al.  THE MEASUREMENT OF SELECTION ON CORRELATED CHARACTERS , 1983, Evolution; international journal of organic evolution.

[26]  G A Parker,et al.  Evolutionary Stable Strategies , 1984, Encyclopedia of Evolutionary Psychological Science.

[27]  D. Falconer Introduction to quantitative genetics. 1. ed. , 1984 .

[28]  Y. Iwasa,et al.  Free fitness that always increases in evolution. , 1988, Journal of theoretical biology.

[29]  A. J. Noordwijk Futuyma, D. J. 1986. Evolutionary Biology 2nd edition, Sinauer Associates Inc. Sunderland, Mass. , 1988 .

[30]  W J Ewens,et al.  An interpretation and proof of the Fundamental Theorem of Natural Selection. , 1989, Theoretical population biology.

[31]  M Slatkin,et al.  The distribution of allelic effects under mutation and selection. , 1990, Genetical research.

[32]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[33]  Arieh Ben-Naim,et al.  A Farewell to Entropy:Statistical Thermodynamics Based on Information , 1992 .

[34]  W J Ewens,et al.  An optimizing principle of natural selection in evolutionary population genetics. , 1992, Theoretical population biology.

[35]  M Slatkin,et al.  Fisher's fundamental theorem of natural selection. , 1992, Trends in ecology & evolution.

[36]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[37]  S. Frank,et al.  George Price's contributions to evolutionary genetics. , 1995, Journal of theoretical biology.

[38]  George Price’s,et al.  George Price ’ s Contributions to Evolutionary Genetics , 1995 .

[39]  Seth Lloyd,et al.  Information measures, effective complexity, and total information , 1996, Complex..

[40]  F. Sá The Design of Adaptive Systems: Optimal Parameters for Variation and Selection in Learning and Development , 1996 .

[41]  Steven A. Frank,et al.  The Design of Natural and Artificial Adaptive Systems , 1996 .

[42]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .

[43]  S. Frank Developmental selection and self-organization. , 1997, Bio Systems.

[44]  S. Frank THE PRICE EQUATION, FISHER'S FUNDAMENTAL THEOREM, KIN SELECTION, AND CAUSAL ANALYSIS , 1997, Evolution; international journal of organic evolution.

[45]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[46]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[47]  S. Siller Foundations of Social Evolution , 1999, Heredity.

[48]  John Maynard Smith,et al.  The Concept of Information in Biology , 2000, Philosophy of Science.

[49]  C. Adami,et al.  Physical complexity of symbolic sequences , 1996, adap-org/9605002.

[50]  F. Pirchner Genetics and Analysis of Quantitative Traits. , 2000 .

[51]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[52]  S. Boissinot,et al.  Evolutionary Biology , 2000, Evolutionary Biology.

[53]  B. Frieden,et al.  Population genetics from an information perspective. , 2001, Journal of theoretical biology.

[54]  Alex Coram,et al.  Evolutionary Stable Strategies , 2001 .

[55]  B. Walsh,et al.  Evolutionary Quantitative Genetics , 2019, Handbook of Statistical Genomics.

[56]  Evandro Agazzi,et al.  What is Complexity , 2002 .

[57]  Yikun Zhang,et al.  A Mechanical Theory of Heat , 2003 .

[58]  B. Roy Frieden,et al.  Science from Fisher Information: A Unification , 2004 .

[59]  W. Ewens Mathematical Population Genetics : I. Theoretical Introduction , 2004 .

[60]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[61]  R. Dewar Maximum entropy production and the fluctuation theorem , 2005 .

[62]  P. Gowaty Developmental Plasticity and Evolution Mary Jane West-Eberhard , 2005, Animal Behaviour.

[63]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[64]  Arieh Ben-Naim,et al.  Entropy Demystified: The Second Law Reduced To Plain Common Sense , 2007 .

[65]  A. Gardner The Price equation , 2008, Current Biology.

[66]  S. Borguet,et al.  ResearchArticle The Fisher Information Matrix as a Relevant Tool for Sensor Selection in Engine Health Monitoring , 2008 .

[67]  S. Frank Natural selection maximizes Fisher information , 2009, Journal of evolutionary biology.

[68]  Marc Harper,et al.  The Replicator Equation as an Inference Dynamic , 2009, ArXiv.

[69]  C. Shalizi Dynamics of Bayesian Updating with Dependent Data and Misspecified Models , 2009, 0901.1342.

[70]  H. P. de Vladar,et al.  Statistical Mechanics and the Evolution of Polygenic Quantitative Traits , 2009, Genetics.

[71]  Alfred O. Hero,et al.  FINE: Fisher Information Nonparametric Embedding , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Carl T. Bergstrom,et al.  The fitness value of information , 2005, Oikos.

[73]  H. P. de Vladar,et al.  The statistical mechanics of a polygenic character under stabilizing selection, mutation and drift , 2010, Journal of The Royal Society Interface.

[74]  S. Amari,et al.  Information geometry of divergence functions , 2010 .

[75]  A. Kleidon,et al.  A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[76]  Andrzej Cichocki,et al.  Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities , 2010, Entropy.

[77]  B. Charlesworth,et al.  Elements of Evolutionary Genetics , 2010 .

[78]  G. Wagner THE MEASUREMENT THEORY OF FITNESS , 2010, Evolution; international journal of organic evolution.

[79]  R. Aparasu Measurement theory and practice , 2010 .

[80]  T. Volk,et al.  It is not the entropy you produce, rather, how you produce it , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[81]  H. P. de Vladar,et al.  The contribution of statistical physics to evolutionary biology. , 2011, Trends in ecology & evolution.

[82]  Christophe Lenglet,et al.  A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry , 2011, NeuroImage.

[83]  Sergio Cruces,et al.  Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization , 2011, Entropy.

[84]  J. Hofbauer,et al.  Evolutionary game dynamics , 2011 .

[85]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[86]  S. Frank,et al.  Natural selection. IV. The Price equation * , 2012, Journal of evolutionary biology.

[87]  Eörs Szathmáry,et al.  Selectionist and Evolutionary Approaches to Brain Function: A Critical Appraisal , 2012, Front. Comput. Neurosci..

[88]  J. Weeks An introduction to population , 2012 .

[89]  S. Frank Natural selection. III. Selection versus transmission and the levels of selection * , 2011, Journal of evolutionary biology.

[90]  Charles Kemp,et al.  Kinship Categories Across Languages Reflect General Communicative Principles , 2012, Science.

[91]  C. S. Statistical Mechanics and , 2022 .