Middle-ear transmission: Acoustic versus ossicular coupling in cat and human

Otologic surgeons consider the action of sound pressure on the cochlear windows to be of major importance in certain cases of middle-ear pathology, yet previously published network models of mammalian middle ears do not include such a mechanism. A unified middle-ear model is developed in which it is assumed that the difference of acoustic pressures acting on the windows adds to the ossicular-chain pressure to produce cochlear input. From a network model of the cat middle-ear cavities we estimate the contributions of pressures on the cochlear windows for both normal and abnormal cat ears. For the human ear we use the model of Kringlebotn (1988) and measurements of Békésy (1947). We determine that the pressure difference across the cochlear windows is negligibly small in normal cat and human ears. Thus, it is a reasonable approximation to ignore this mechanism in normal ears. For ears with a drastically altered tympanic membrane and/or ossicular chain, acoustic coupling to the cochlear windows can--to a considerable extent--explain residual hearing in human. The model predicts hearing levels for type IV tympanoplastic reconstructions that agree with the best results obtained surgically.

[1]  切替 一郎,et al.  The structure and function of the middle ear , 1960 .

[2]  A. Møller,et al.  AN EXPERIMENTAL STUDY OF THE ACOUSTIC IMPEDANCE OF THE MIDDLE EAR AND ITS TRANSMISSION PROPERTIES. , 1965, Acta oto-laryngologica.

[3]  C. Wiederhielm,et al.  Viscoelastic description of a collagenous tissue in simple elongation. , 1969, Journal of applied physiology.

[4]  R. Carhart Clinical application of bone conduction audiometry. , 1950, Archives of otolaryngology.

[5]  M. Kringlebotn,et al.  Network model for the human middle ear. , 1988, Scandinavian audiology.

[6]  A. Nuttall Measurements of the guinea-pig middle-ear transfer characteristic. , 1974, The Journal of the Acoustical Society of America.

[7]  Robert A. Wilson Synopsis of Otolaryngology , 1980 .

[8]  H WULLSTEIN,et al.  The restoration of the function of the middle ear, in chronic otitis media. , 1956, The Annals of otology, rhinology, and laryngology.

[9]  M. Vlaming,et al.  Studies on the mechanics of the reconstructed human middle ear. , 1986, Clinical otolaryngology and allied sciences.

[10]  L. Gisselsson Bilateral Luxation of the Incudo-Stapedial Joint , 1958, The Journal of Laryngology & Otology.

[11]  M LAWRENCE,et al.  The middle ear in sound conduction. , 1948, Archives of otolaryngology.

[12]  Implantable hearing aids: changes in the auditory-evoked potential of the monkey in response to increased loading of the stapes. , 1990, American journal of otolaryngology.

[13]  J. Keen,et al.  THE COMPARATIVE ANATOMY OF THE TYMPANIC BULLA AND AUDITORY OSSICLES, WITH A NOTE SUGGESTING THEIR FUNCTION , 1940 .

[14]  Jozef J. Zwislocki,et al.  Analysis of the Middle‐Ear Function. Part I: Input Impedance , 1962 .

[15]  J. Tautz,et al.  Accessory pathway for sound transfer in a neotropical frog. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[16]  W. Ko,et al.  Electromagnetic Implantable Middle Ear Hearing Device of the Ossicular-Stimulating Type: Principles, Designs, and Experiments , 1988, The Annals of otology, rhinology & laryngology. Supplement.

[17]  Walter A. Rosenblith,et al.  The Early History of Hearing—Observations and Theories , 1948 .

[18]  D. B. Lewis,et al.  Directional Hearing in the Japanese Quail (Coturnix Coturnix Japonica): I. Acoustic Properties of the Auditory System , 1980 .

[19]  M. Kringlebotn,et al.  The size of the middle ear and the mastoid air cell. , 1978, Acta oto-laryngologica.

[20]  R. W. Little,et al.  Rheological properties of canine anterior cruciate ligaments. , 1969, Journal of biomechanics.

[21]  W. T. Peake,et al.  Input impedance of the cochlea in cat. , 1982, The Journal of the Acoustical Society of America.

[22]  J. Hough INCUDOSTAPEDIAL JOINT SEPARATION: ETIOLOGY, TREATMENT AND SIGNIFICANCE. , 1959, The Laryngoscope.

[23]  John W. Matthews,et al.  Modeling Reverse Middle Ear Transmission of Acoustic Distortion Signals , 1983 .

[24]  M. Lawrence,et al.  The Acoustic Pathways to the Cochlea , 1950 .

[25]  A. Nuttall,et al.  Tympanic muscle effects on middle-ear transfer characteristic. , 1974, The Journal of the Acoustical Society of America.

[26]  W. T. Peake,et al.  Middle-ear characteristics of anesthetized cats. , 1967, The Journal of the Acoustical Society of America.

[27]  M. Kringlebotn,et al.  Frequency characteristics of the middle ear. , 1985, The Journal of the Acoustical Society of America.

[28]  G. Békésy Vibration of the Head in a Sound Field and Its Role in Hearing by Bone Conduction , 1948 .

[29]  J C DICK,et al.  The tension and resistance to stretching of human skin and other membranes, with results from a series of normal and oedematous cases , 1951, The Journal of physiology.

[30]  L H Carney,et al.  The radiation impedance of the external ear of cat: measurements and applications. , 1988, The Journal of the Acoustical Society of America.

[31]  Albert S. Feng,et al.  Peripheral basis of sound localization in anurans. Acoustic properties of the frog's ear , 1981, Hearing Research.

[32]  Thomas J. Lynch Signal processing by the cat middle ear: admittance and transmission, measurements and models , 1981 .

[33]  R. Margolis,et al.  The effects of experimentally-produced middle ear lesions on tympanometry in cats. , 1978, Acta oto-laryngologica.

[34]  R. M. Hunt,et al.  The auditory bulla in carnivora: An anatomical basis for reappraisal of carnivore evolution , 1974 .

[35]  Aage R. Møller,et al.  Network Model of the Middle Ear , 1961 .

[36]  S M Khanna,et al.  Specification of the acoustical input to the ear at high frequencies. , 1985, The Journal of the Acoustical Society of America.

[37]  Charles A. Desoer,et al.  Basic Circuit Theory , 1969 .

[38]  A.R.D. Thornton,et al.  Foundations of Modern Auditory Theory , 1970 .

[39]  H. Schuknecht,et al.  Results of tympanoplasty and mastoidectomy at the massachusetts eye and ear infirmary , 1971, The Laryngoscope.

[40]  P. H. Hartline,et al.  Physiological basis for detection of sound and vibration in snakes. , 1971, The Journal of experimental biology.

[41]  Horst L. Wullstein,et al.  LXXXVIII The Restoration of the Function of the Middle Ear, in Chronic Otitis Media , 1956 .

[42]  T. Palva,et al.  The meatally based musculoperiosteal flap in cavity obliteration. , 1979, Archives of otolaryngology.

[43]  M. Novacek Aspects of the problem of variation, origin and evolution of the eutherian auditory bulla , 1977 .

[44]  W. J. M. Epping,et al.  Directional hearing in the grass frog ( Rana temporaria L.): I. Mechanical vibrations of tympanic membrane , 1984, Hearing Research.

[45]  L. U. E. Kohllöffel,et al.  Notes on the comparative mechanics of hearing. III. On Shrapnell's membrane , 1984, Hearing Research.

[46]  Jozef J. Zwislocki,et al.  Analysis of the Middle‐Ear Function. Part II: Guinea‐Pig Ear , 1963 .

[47]  G. Békésy,et al.  Experiments in Hearing , 1963 .

[48]  R. Plunkett,et al.  Formulas for Stress and Strain , 1965 .

[49]  Kenneth J. Dormer,et al.  Middle Ear Implantable Hearing Device: Ongoing Animal and Human Evaluation , 1988, The Annals of otology, rhinology, and laryngology.

[50]  Y. Onchi Mechanism of the Middle Ear , 1961 .

[51]  John T. McElveen,et al.  Effect of Mastoid Cavity Modification on Middle Ear Sound Transmission , 1982, The Annals of otology, rhinology, and laryngology.

[52]  P. I. M. Johannesma,et al.  Directional hearing in the grassfrog (Rana temporaria L.). II. Acoustics and modelling of the auditory periphery , 1986, Hearing Research.

[53]  G Zweig,et al.  Middle-ear phenomenology: the view from the three windows. , 1992, The Journal of the Acoustical Society of America.

[54]  V. Goodhill Ear diseases, deafness, and dizziness , 1979 .

[55]  John J. Rosowski,et al.  Cadaver Middle Ears as Models for Living Ears: Comparisons of Middle Ear Input Immittance , 1990, The Annals of otology, rhinology, and laryngology.

[56]  J. Suzuki,et al.  Middle ear implant for humans. , 1985, Acta oto-laryngologica.

[57]  R. D. Harkness BIOLOGICAL FUNCTIONS OF COLLAGEN , 1961, Biological reviews of the Cambridge Philosophical Society.

[58]  P Dallos,et al.  Low-frequency auditory characteristics: Species dependence. , 1970, The Journal of the Acoustical Society of America.

[59]  A R Palmer,et al.  Mechanical properties of the frog ear: vibration measurements under free- and closed-field acoustic conditions , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[60]  Harold F. Schuknecht,et al.  Pathology of the Ear , 1974 .

[61]  J J Rosowski,et al.  The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss. , 1991, The Journal of the Acoustical Society of America.

[62]  P Howell,et al.  An electrical network model of inertially induced bone-conducted sound. , 1990, Scandinavian audiology.

[63]  Impedance of the Ear—A Variable Quantity , 1962 .

[64]  Georg v. Békésy,et al.  Zur Theorie des Hörens bei der Schallaufnahme durch Knochenleitung , 1932 .

[65]  G. Békésy The Sound Pressure Difference Between the Round and the Oval Windows and the Artificial Window of Labyrinthine Fenestration , 1947 .

[66]  Jont B. Allen,et al.  Measurement of Eardrum Acoustic Impedance , 1986 .