Twistor theory: An approach to the quantisation of fields and space-time
暂无分享,去创建一个
[1] J. L. Synge,et al. General relativity; papers in honour of J. L. Synge , 1972 .
[2] E. Newman,et al. A Note on Asymptotically Flat Spaces , 1971 .
[3] J. Simon,et al. Conformal covariance of field equations , 1970 .
[4] Roger Penrose,et al. Solutions of the Zero-Rest-Mass Equations , 1969 .
[5] N. Hicks. Notes on Differential Geometry , 1967 .
[6] Sidney D. Drell,et al. Relativistic Quantum Fields , 1965 .
[7] B. Dewitt,et al. Relativity, Groups, and Topology , 1964 .
[8] R. Kerr,et al. Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .
[9] S. Helgason. Differential Geometry and Symmetric Spaces , 1964 .
[10] F. Rohrlich,et al. Conformal Invariance in Physics , 1962 .
[11] R. Penrose. A spinor approach to general relativity , 1960 .
[12] H. Bondi,et al. Gravitational Waves in General Relativity , 1960 .
[13] W. T. Payne. Elementary Spinor Theory , 1952 .
[14] J. Semple,et al. Introduction to Algebraic Geometry , 1949 .
[15] N. H. Kuiper. On Conformally-Flat Spaces in the Large , 1949 .
[16] H. Weyl. The Classical Groups , 1939 .
[17] H. Weyl,et al. Spinors in n Dimensions , 1935 .
[18] L. Eisenhart,et al. Continuous groups of transformations , 1933 .