On the limits of an “in vacuum” model to determine the mechanical parameters of isotropic poroelastic materials

[1]  Raymond Panneton,et al.  A mixed displacement-pressure formulation for poroelastic materials , 1998 .

[2]  Yeon June Kang,et al.  A finite element model for sound transmission through foam‐lined double‐panel structures , 1996 .

[3]  Gilbert F. Lee Resonance apparatus for damping measurements , 1995 .

[4]  Raymond Panneton,et al.  BOUNDARY CONDITIONS FOR THE WEAK FORMULATION OF THE MIXED (U, P) POROELASTICITY PROBLEM , 1999 .

[5]  Raymond Panneton,et al.  Polynomial relations for quasi-static mechanical characterization of isotropic poroelastic materials , 2001 .

[6]  J. Allard Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials , 1994 .

[7]  Yeon June Kang,et al.  Effect of circumferential edge constraint on the acoustical properties of glass fiber materials , 2001 .

[8]  T. Pritz,et al.  Transfer function method for investigating the complex modulus of acoustic materials: Spring-like specimen , 1980 .

[9]  J. Allard,et al.  Frame-borne surface waves in air-saturated porous media , 2002 .

[10]  B. Brouard,et al.  Determination Experimentale du Module de Rigidite en Flexion d'une Plaque de Poreux aux Basses Frequences , 2000 .

[11]  Raymond Panneton,et al.  Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials , 1996 .

[12]  M. Melon Caracterisation de materiaux poreux par ultrasons de basses frequences (20 khz-500 khz) , 1996 .

[13]  R. Panneton,et al.  Analytical solutions for characterizing tortuosity and characteristic lengths of porous materials using acoustical measurements: Indirect model , 2001 .

[14]  A. Craggs,et al.  A finite element model for rigid porous absorbing materials , 1978 .