Heuristics for Quantum Compiling with a Continuous Gate Set

We present an algorithm for compiling arbitrary unitaries into a sequence of gates native to a quantum processor. As accurate CNOT gates are hard for the foreseeable Noisy- Intermediate-Scale Quantum devices era, our A* inspired algorithm attempts to minimize their count, while accounting for connectivity. We discuss the search strategy together with metrics to expand the solution frontier. For a workload of circuits with complexity appropriate for the NISQ era, we produce solutions well within the best upper bounds published in literature and match or exceed hand tuned implementations, as well as other existing synthesis alternatives. In particular, when comparing against state-of-the-art available synthesis packages we show 2.4x average (up to 5.3x) reduction in CNOT count. We also show how to re-target the algorithm for a different chip topology and native gate set, while obtaining similar quality results. We believe that empirical tools like ours can facilitate algorithmic exploration, gate set discovery for quantum processor designers, as well as providing useful optimization blocks within the quantum compilation tool-chain.

[1]  S.S. Bullock,et al.  An arbitrary two-qubit computation in 23 elementary gates or less , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[2]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[4]  Krysta Marie Svore,et al.  Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.

[5]  Dmitri Maslov,et al.  Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits , 2012, IEEE Transactions on Computers.

[6]  N. Vitanov Synthesis of arbitrary SU(3) transformations of atomic qutrits , 2012 .

[7]  Alex Bocharov,et al.  Resource-optimal single-qubit quantum circuits. , 2012, Physical review letters.

[8]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[9]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[10]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[11]  Igor L. Markov,et al.  On the CNOT-cost of TOFFOLI gates , 2008, Quantum Inf. Comput..

[12]  Peter Selinger,et al.  Exact synthesis of multi-qubit Clifford+T circuits , 2012, ArXiv.

[13]  Robert R. Tucci A Rudimentary Quantum Compiler(2cnd Ed.) , 1999 .

[14]  Matthias Christandl,et al.  Quantum Circuits for Isometries , 2015, 1501.06911.

[15]  Abraham Lempel,et al.  Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields , 1980, SIAM J. Comput..

[16]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[17]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[18]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[19]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[20]  Michele Mosca,et al.  T-Count Optimization and Reed–Muller Codes , 2016, IEEE Transactions on Information Theory.

[21]  Alexis De Vos,et al.  Block-Z X Z synthesis of an arbitrary quantum circuit , 2015, 1512.07240.

[22]  Bertrand Georgeot,et al.  How many CNOT gates does it take to generate a three-qubit state ? , 2008 .

[23]  Thomas Schuster,et al.  Implementation and Applications of Two Qutrit Gates in Superconducting Transmon Qubits , 2018 .

[24]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[25]  Robert R. Tucci An Introduction to Cartan's KAK Decomposition for QC Programmers , 2005, quant-ph/0507171.

[26]  Ola Al-Ta’ani,et al.  Quantum circuit synthesis using Solovay-Kitaev algorithm and optimization techniques , 2015 .

[27]  Krysta Marie Svore,et al.  Repeat-until-success: non-deterministic decomposition of single-qubit unitaries , 2013, Quantum Inf. Comput..

[28]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[29]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[30]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[31]  Bronzan Parametrization of SU(3). , 1988, Physical review. D, Particles and fields.

[32]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[33]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[34]  Mikko Möttönen,et al.  Quantum circuits for general multiqubit gates. , 2004, Physical review letters.

[35]  Brian D. Sutton Computing the complete CS decomposition , 2007, Numerical Algorithms.

[36]  C. Monroe,et al.  Verified quantum information scrambling , 2018, Nature.

[37]  Daniel Nigg,et al.  Compiling quantum algorithms for architectures with multi-qubit gates , 2016, 1601.06819.

[38]  Roger Colbeck,et al.  Introduction to UniversalQCompiler , 2019, ArXiv.

[39]  Eyob A. Sete,et al.  A functional architecture for scalable quantum computing , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[40]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[41]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[42]  Attila B. Nagy On an implementation of the Solovay-Kitaev algorithm , 2006 .

[43]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[44]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .