Influence of Body-Implanted Capsule Dimensions and Materials on Achievable Radiation Efficiency

Fundamental bounds on achievable radiation efficiency serve as the design quality gauge, facilitate the choice of the antenna type considering the available dimensions, and provide simple rules to check the feasibility of a given design. This study quantifies the effect of body-implanted capsule dimensions and materials on achievable radiation efficiency. We also show that a dielectric-loaded electric antenna operating close to the optimal frequency can radiate more efficiently than a magnetic one. The latter, however, is more efficient when electrically small.

[1]  Lukas Jelinek,et al.  Radiation Efficiency Cost of Resonance Tuning , 2018, IEEE Transactions on Antennas and Propagation.

[2]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[3]  Yong-Xin Guo,et al.  Design of a Dual-Polarized Wideband Conformal Loop Antenna for Capsule Endoscopy Systems , 2018, IEEE Transactions on Antennas and Propagation.

[4]  Eng Gee Lim,et al.  Wideband Loop Antenna With Split-Ring Resonators for Wireless Medical Telemetry , 2019, IEEE Antennas and Wireless Propagation Letters.

[5]  Raj Mittra,et al.  An Ultrawideband Conformal Capsule Antenna With Stable Impedance Matching , 2017, IEEE Transactions on Antennas and Propagation.

[6]  Konstantina S. Nikita,et al.  A Review of In-Body Biotelemetry Devices: Implantables, Ingestibles, and Injectables , 2017, IEEE Transactions on Biomedical Engineering.

[7]  Raj Mittra,et al.  Conformal Capsule Antenna With Reconfigurable Radiation Pattern for Robust Communications , 2018, IEEE Transactions on Antennas and Propagation.

[8]  Ada S. Y. Poon,et al.  Implantable biomedical devices: Wireless powering and communication , 2012, IEEE Communications Magazine.

[9]  L. Verloock,et al.  Experimental characterisation of in‐to‐out‐body path loss at 433 MHz in dairy cows , 2019, Electronics Letters.

[10]  Stavros Koulouridis,et al.  On the Design of Miniature MedRadio Implantable Antennas , 2017, IEEE Transactions on Antennas and Propagation.

[11]  Ronan Sauleau,et al.  Antennas for ingestible capsule telemetry , 2016 .

[12]  J. S. Ho,et al.  Midfield wireless powering of subwavelength autonomous devices. , 2013, Physical review letters.

[13]  Ronan Sauleau,et al.  Impact of Tissue Electromagnetic Properties on Radiation Performance of In-Body Antennas , 2018, IEEE Antennas and Wireless Propagation Letters.

[14]  Ronan Sauleau,et al.  Immune-to-Detuning Wireless In-Body Platform for Versatile Biotelemetry Applications , 2019, IEEE Transactions on Biomedical Circuits and Systems.

[15]  Pavel Kůs,et al.  Numerical solution of coupled problems using code Agros2D , 2013, Computing.

[16]  D. Nikolayev,et al.  Electromagnetic Radiation Efficiency of Body-Implanted Devices , 2018 .

[17]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[18]  Kazuyuki Saito,et al.  Antenna Design for Impulse-Radio-Based Wireless Capsule Endoscope Communication Systems , 2018, IEEE Transactions on Antennas and Propagation.

[19]  Luc Martens,et al.  Optimal Radiation of Body-Implanted Capsules. , 2019, Physical review letters.

[20]  Zhao Wang,et al.  An Implantable and Conformal Antenna for Wireless Capsule Endoscopy , 2018, IEEE Antennas and Wireless Propagation Letters.

[21]  A. K. Skrivervik,et al.  Design, Realization and Measurements of a Miniature Antenna for Implantable Wireless Communication Systems , 2011, IEEE Transactions on Antennas and Propagation.

[22]  L. Le Coq,et al.  Robust Ultraminiature Capsule Antenna for Ingestible and Implantable Applications , 2017, IEEE Transactions on Antennas and Propagation.

[23]  K. Haneda,et al.  Antenna System Design for Improved Wireless Capsule Endoscope Links at 433 MHz , 2019, IEEE Transactions on Antennas and Propagation.

[24]  B. Fuchs,et al.  The Effect of Insulating Layers on the Performance of Implanted Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[25]  Zvonimir Sipus,et al.  Fundamental Limits for Implanted Antennas: Maximum Power Density Reaching Free Space , 2019, IEEE Transactions on Antennas and Propagation.