Bifurcations of Fractional-order Diffusionless Lorenz System

Using the predictor-corrector scheme, the fractional-order diffusionless Lorenz system is investigated numerically. The effective chaotic range of the fractional-order diffusionless system for variation of the single control parameter is determined. The route to chaos is by period-doubling bifurcation in this fractional-order system, and some typical bifurcations are observed, such as the flip bifurcation, the tangent bifurcation, an interior crisis bifurcation, and transient chaos. The results show that the fractional-order diffusionless Lorenz system has complex dynamics with interesting characteristics. c