Towards a Mathematical Theory of Processes

A recent „mathematical” approach to the semantics of programming languages is extended to allow for quasi-parallel execution of processes. A notion of „action” is proposed as a formalization of the kind of process involved, and various ways of action composition are studied. The relevance of the approach for applications in the areas of language design, language description, and proof of program correctness is indicated.

[1]  B. J. Mailloux,et al.  Report on the Algorithmic Language ALGOL 68 , 1969 .

[2]  H Bekić,et al.  An introduction to ALGOL 68 , 1973 .

[3]  Dana S. Scott,et al.  The lattice of flow diagrams , 1971, Symposium on Semantics of Algorithmic Languages.

[4]  Christopher Strachey,et al.  Toward a mathematical semantics for computer languages , 1971 .

[5]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[6]  H. Bekić,et al.  Formalization of Storage Properties , 1984, Programming Languages and Their Definition.

[7]  Hans Bekic On the formal Definition of Programming Language , 1984, Programming Languages and Their Definition.

[8]  C. Pair Concerning the Syntax of ALGOL 68 , 1970 .

[9]  Richard M. Karp,et al.  Parallel Program Schemata , 1969, J. Comput. Syst. Sci..

[10]  Peter J. Landin,et al.  PROGRAMS AND THEIR PROOFS: AN ALGEBRAIC APPROACH, , 1968 .

[11]  Cliff B. Jones,et al.  Proving correctness of implementation techniques , 1971, Symposium on Semantics of Algorithmic Languages.

[12]  C. Petri Kommunikation mit Automaten , 1962 .

[13]  F. R. A. Hopgood,et al.  Machine Intelligence 5 , 1971, The Mathematical Gazette.

[14]  Donald Michie,et al.  Machine Intelligence 4 , 1970 .