The modelling of the toughening of epoxy polymers via silica nanoparticles: The effects of volume fraction and particle size

[1]  A. Kinloch,et al.  The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles , 2013 .

[2]  A. Kinloch,et al.  Fracture Behaviour of Polymers , 2013 .

[3]  Y. Mai,et al.  Cyclic fatigue crack propagation of nanoparticle modified epoxy , 2012 .

[4]  P. Dittanet,et al.  Effect of silica nanoparticle size on toughening mechanisms of filled epoxy , 2012 .

[5]  S. Gilmour,et al.  Quantifying nanoparticle dispersion by using the area disorder of Delaunay triangulation , 2012 .

[6]  A. Kinloch,et al.  Erratum to: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles , 2011 .

[7]  S. Gilmour,et al.  Quantifying nanoparticle dispersion: application of the Delaunay network for objective analysis of sample micrographs , 2011 .

[8]  A. Kinloch,et al.  The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles , 2010 .

[9]  A. Kinloch Adhesion and Adhesives: Science and Technology , 2010 .

[10]  J. Williams Particle toughening of polymers by plastic void growth , 2010 .

[11]  Yiu-Wing Mai,et al.  Critical particle size for interfacial debonding in polymer/nanoparticle composites , 2010 .

[12]  A. Kinloch,et al.  Particle cavitation in rubber toughened epoxies: the role of particle size , 2010 .

[13]  K. Masania,et al.  The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles , 2010 .

[14]  R. Pearson,et al.  Toughening mechanisms in epoxy–silica nanocomposites (ESNs) , 2009 .

[15]  M. Ziehmer,et al.  Interactions between silica nanoparticles and an epoxy resin before and during network formation , 2009 .

[16]  B. Lauke Effect of Particle Size on Fracture Toughness of Polymer Composites , 2008 .

[17]  Y. Mai,et al.  Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites , 2008 .

[18]  A. Kinloch,et al.  The fracture of glass-fibre-reinforced epoxy composites using nanoparticle-modified matrices , 2008 .

[19]  Jian-kang Chen,et al.  Size effect of particles on the damage dissipation in nanocomposites , 2007 .

[20]  A. C. Taylor,et al.  The fracture and fatigue behaviour of nano-modified epoxy polymers , 2007 .

[21]  D. Ho,et al.  Chain conformations and bound-layer correlations in polymer nanocomposites. , 2007, Physical review letters.

[22]  Anthony J. Kinloch,et al.  Toughening mechanisms of nanoparticle-modified epoxy polymers , 2007 .

[23]  A. Kinloch,et al.  The interlaminar toughness of carbon-fibre reinforced plastic composites using ‘hybrid-toughened’ matrices , 2006 .

[24]  Zhongya Zhang,et al.  Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content , 2006 .

[25]  B. Pukánszky,et al.  Interfaces and interphases in multicomponent materials: past, present, future , 2005 .

[26]  R. Pearson,et al.  The effect of particle -matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness , 2003 .

[27]  Takafumi Kawaguchi,et al.  The effect of particle - matrix adhesion on the mechanical behavior of glass filled epoxies: Part 1. A study on yield behavior and cohesive strength , 2003 .

[28]  A. Kinloch Toughening Epoxy Adhesives to Meet Today’s Challenges , 2003 .

[29]  R. E. Robertson,et al.  Rigid-particle toughening of glassy polymers , 2003 .

[30]  B. Pukánszky,et al.  Prediction of the yield stress of composites containing particles with an interlayer of changing properties , 2002 .

[31]  E. Fekete,et al.  An interphase with changing properties and the mechanism of deformation in particulate-filled polymers , 1997 .

[32]  B. Pukánszky,et al.  Stress distribution around inclusions, interaction, and mechanical properties of particulate‐filled composites , 1996 .

[33]  A. Kinloch,et al.  Modelling of the toughening mechanisms in rubber-modified epoxy polymers , 1992, Journal of Materials Science.

[34]  Pht Peter Vollenberg,et al.  The mechanical properties of chalk-filled polypropylene: a preliminary investigation , 1990 .

[35]  J. Vinson Adhesive bonding of polymer composites , 1989 .

[36]  L. J. M. Ven,et al.  Particle size dependence of the Young's modulus of filled polymers: 2. Annealing and solid-state nuclear magnetic resonance experiments , 1989 .

[37]  Pht Peter Vollenberg,et al.  Particle size dependence of the Young's modulus of filled polymers: 1. Preliminary experiments , 1989 .

[38]  Pht Peter Vollenberg,et al.  Experimental determination of thermal and adhesion stress in particle filled thermoplasts , 1988 .

[39]  D. Heikens,et al.  The effect of interfacial adhesion on the tensile behavior of polystyrene–glass‐bead composites , 1983 .

[40]  A. Gent Detachment of an elastic matrix from a rigid spherical inclusion , 1980 .

[41]  K. Masania,et al.  Toughening of epoxy using core–shell particles , 2011 .

[42]  A. Kinloch,et al.  The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite , 2010 .

[43]  K. F. Chen,et al.  Observation of the Decay B0J , 2007 .

[44]  A. Kinloch,et al.  Erratum to: The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers , 2006 .

[45]  B. Pukánszky,et al.  Stress distribution in particulate filled composites and its effect on micromechanical deformation , 1995, Journal of Materials Science.

[46]  R. Young,et al.  A predictive model for particulate filled composite materials , 1989 .

[47]  Robert M. Caddell,et al.  Deformation and Fracture of Solids , 1980 .

[48]  D. Nicholson On the Detachment of a Rigid Inclusion from an Elastic Matrix , 1979 .

[49]  C. A. May,et al.  Epoxy Resins: Chemistry and Technology , 1973 .

[50]  F. Mcgarry,et al.  Effect of rubber particle size on deformation mechanisms in glassy epoxy , 1973 .