Calibration of constitutive models with error control

In this thesis a framework for the calibration of constitutive models is presented. The framework involves the formulation of an optimization problem which is solved using strategies based on, essentially, Newton's method. The introduction of an additional costate field in order to incorporate the state equation has the advantage that error control in an arbitrary "goal" quantity is formally straightforward. The errors analyzed are those that arise from the Finite Element discretization and from uncertainties in the experimental data. Among the applications, moisture transport in wood and nonlinear viscoelasticity are discussed in more detail.

[1]  Rolf Rannacher,et al.  Adaptive Galerkin finite element methods for partial differential equations , 2001 .

[2]  J. Ponthot,et al.  A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation , 2006 .

[3]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[4]  Rolf Mahnken,et al.  A unified approach for parameter identification of inelastic material models in the frame of the finite element method , 1996 .

[5]  Christian Clason,et al.  An Adaptive Hybrid FEM/FDM Method for an Inverse Scattering Problem in Scanning Acoustic Microscopy , 2006, SIAM J. Sci. Comput..

[6]  L. Nordström,et al.  A dynamic programming algorithm for input estimation on linear time-variant systems , 2005 .

[7]  M. Ekh Thermo-Elastic-Viscoplastic Modeling of IN792 , 2001 .

[8]  R. Fletcher Practical Methods of Optimization , 1988 .

[9]  A. Matzenmiller,et al.  Comparison of numerical methods for identification of viscoelastic line spectra from static test data , 2005 .

[10]  Patrik Nordberg Time Domain Methods for Load Identification of Linear and Nonlinear Systems , 2004 .

[11]  G. Carey,et al.  Analysis of parameter sensitivity and experimental design for a class of nonlinear partial differential equations , 2005 .

[12]  Per Heintz,et al.  On adaptive strategies and error control in fracture mechanics , 2004 .

[13]  R. Becker,et al.  Numerical parameter estimation for chemical models in multidimensional reactive flows , 2004 .

[14]  Erwin Stein,et al.  Goal-oriented a posteriori error estimates in linear elastic fracture mechanics , 2006 .

[15]  Giulio Maier,et al.  Stochastic calibration of local constitutive models through measurements at the macroscale in heterogeneous media , 2006 .

[16]  Giulio Maier,et al.  Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping , 2005 .

[17]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[18]  Ivar Gustafsson,et al.  Using QR factorization and SVD to solve input estimation problems in structural dynamics , 2006 .

[19]  Fredrik Larsson,et al.  A strategy for input estimation with sensitivity analysis , 2007 .

[20]  Peter Hansbo,et al.  Space‐time finite elements and an adaptive strategy for the coupled thermoelasticity problem , 2003 .

[21]  H. Matthies,et al.  Finite elements for stochastic media problems , 1999 .

[22]  Håkan Johansson,et al.  Calibration of a Nonlinear Elastic Composite with Goal-Oriented Error Control Using a Sub-Scale Modeling Approach , 2004 .

[23]  Peter Hansbo,et al.  Strategies for computing goal‐oriented a posteriori error measures in non‐linear elasticity , 2002 .

[24]  Bertil Enquist,et al.  Identification of material hardening parameters by three-point bending of metal sheets , 2006 .

[25]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[26]  J. Tinsley Oden,et al.  Verification and validation in computational engineering and science: basic concepts , 2004 .

[27]  Kenneth Runesson,et al.  Parameter identification in constitutive models via optimization with a posteriori error control , 2005 .

[28]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[29]  Larisa Beilina,et al.  A POSTERIORI ERROR ESTIMATION IN COMPUTATIONAL INVERSE SCATTERING , 2005 .

[30]  Steen Krenk,et al.  Stochastic Finite Element Methods , 2004 .

[31]  Paul Steinmann,et al.  Generalized Parameter Identification for Finite Viscoelasticity , 2007 .

[32]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[33]  Roland Becker,et al.  A posteriori error estimation for finite element discretization of parameter identification problems , 2004, Numerische Mathematik.

[34]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[35]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[36]  Roland Becker,et al.  Efficient numerical solution of parabolic optimization problems by finite element methods , 2007, Optim. Methods Softw..

[37]  Peter Hansbo,et al.  Time finite elements and error computation for (visco)plasticity with hardening or softening , 2003 .

[38]  H. R. Busby,et al.  Practical inverse analysis in engineering , 1997 .

[39]  Manfred Laumen Newton's Method for a Class of Optimal Shape Design Problems , 1996, SIAM J. Optim..

[40]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[41]  P. Steinmann,et al.  A finite element algorithm for parameter identification of material models for fluid saturated porous media , 2001 .

[42]  I. Gustafsson,et al.  Dynamic regularization of input estimation problems by explicit block inversion , 2006 .

[43]  N. Huber,et al.  A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery , 2001 .

[44]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[45]  Parameter identification for steady-state groundwater flow , 1995 .

[46]  J. Petersson,et al.  A Finite Element Analysis of Optimal Variable Thickness Sheets , 1999 .

[47]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[48]  G. Holzapfel,et al.  Brain tissue deforms similarly to filled elastomers and follows consolidation theory , 2006 .

[49]  Wolfgang Bangerth,et al.  A framework for the adaptive finite element solution of large inverse problems. I. Basic techniques , 2004 .

[50]  C. S. Jog,et al.  Stability of finite element models for distributed-parameter optimization and topology design , 1996 .

[51]  Roland Becker,et al.  Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations , 2005 .