Constructing Noise-Invariant Representations of Sound in the Auditory Pathway

Along the auditory pathway from auditory nerve to midbrain to cortex, individual neurons adapt progressively to sound statistics, enabling the discernment of foreground sounds, such as speech, over background noise.

[1]  Sarah M. N. Woolley,et al.  Sparse and Background-Invariant Coding of Vocalizations in Auditory Scenes , 2013, Neuron.

[2]  Timothy Q. Gentner,et al.  Associative Learning Enhances Population Coding by Inverting Interneuronal Correlation Patterns , 2013, Neuron.

[3]  Jonathan Z. Simon,et al.  Adaptive Temporal Encoding Leads to a Background-Insensitive Cortical Representation of Speech , 2013, The Journal of Neuroscience.

[4]  D. Poeppel,et al.  Mechanisms Underlying Selective Neuronal Tracking of Attended Speech at a “Cocktail Party” , 2013, Neuron.

[5]  Frédéric E. Theunissen,et al.  Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise , 2013, PLoS Comput. Biol..

[6]  Colin W G Clifford,et al.  Adaptation Improves Neural Coding Efficiency Despite Increasing Correlations in Variability , 2013, The Journal of Neuroscience.

[7]  Gal Chechik,et al.  Auditory abstraction from spectro-temporal features to coding auditory entities , 2012, Proceedings of the National Academy of Sciences.

[8]  Neil C. Rabinowitz,et al.  Spectrotemporal Contrast Kernels for Neurons in Primary Auditory Cortex , 2012, The Journal of Neuroscience.

[9]  J. Simon,et al.  Emergence of neural encoding of auditory objects while listening to competing speakers , 2012, Proceedings of the National Academy of Sciences.

[10]  N. Mesgarani,et al.  Selective cortical representation of attended speaker in multi-talker speech perception , 2012, Nature.

[11]  Brian N. Pasley,et al.  Reconstructing Speech from Human Auditory Cortex , 2012, PLoS biology.

[12]  M. Kilgard,et al.  Cortical activity patterns predict robust speech discrimination ability in noise , 2011, The European journal of neuroscience.

[13]  Katherine I. Nagel,et al.  Two-dimensional adaptation in the auditory forebrain. , 2011, Journal of neurophysiology.

[14]  Eero P. Simoncelli,et al.  Article Sound Texture Perception via Statistics of the Auditory Periphery: Evidence from Sound Synthesis , 2022 .

[15]  Neil C. Rabinowitz,et al.  Contrast Gain Control in Auditory Cortex , 2011, Neuron.

[16]  Sarah M. N. Woolley,et al.  Incorporating Naturalistic Correlation Structure Improves Spectrogram Reconstruction from Neuronal Activity in the Songbird Auditory Midbrain , 2011, The Journal of Neuroscience.

[17]  Arnulf B. A. Graf,et al.  Decoding the activity of neuronal populations in macaque primary visual cortex , 2011, Nature Neuroscience.

[18]  Jonathan H. Venezia,et al.  Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. , 2010, Cerebral cortex.

[19]  E. Chang,et al.  Categorical Speech Representation in Human Superior Temporal Gyrus , 2010, Nature Neuroscience.

[20]  L. Carney,et al.  Power-Law Dynamics in an Auditory-Nerve Model Can Account for Neural Adaptation to Sound-Level Statistics , 2010, The Journal of Neuroscience.

[21]  Johannes C. Dahmen,et al.  Adaptation to Stimulus Statistics in the Perception and Neural Representation of Auditory Space , 2010, Neuron.

[22]  I. Nelken,et al.  Functional organization and population dynamics in the mouse primary auditory cortex , 2010, Nature Neuroscience.

[23]  S. David,et al.  Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex. , 2009, Journal of neurophysiology.

[24]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[25]  Laurel H Carney,et al.  A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. , 2009, The Journal of the Acoustical Society of America.

[26]  B. Delgutte,et al.  Dynamic Range Adaptation to Sound Level Statistics in the Auditory Nerve , 2009, The Journal of Neuroscience.

[27]  G. Christopher Stecker,et al.  Human evoked cortical activity to signal-to-noise ratio and absolute signal level , 2009, Hearing Research.

[28]  Rainer Goebel,et al.  "Who" Is Saying "What"? Brain-Based Decoding of Human Voice and Speech , 2008, Science.

[29]  Paul V. Watkins,et al.  Specialized neuronal adaptation for preserving input sensitivity , 2008, Nature Neuroscience.

[30]  Jont B. Allen,et al.  Consonant confusions in white noise. , 2008, The Journal of the Acoustical Society of America.

[31]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .

[32]  I. Dean,et al.  Rapid Neural Adaptation to Sound Level Statistics , 2008, The Journal of Neuroscience.

[33]  Benedikt Grothe,et al.  Efficient Temporal Processing of Naturalistic Sounds , 2008, PloS one.

[34]  M. Sahani,et al.  Nonlinearities and Contextual Influences in Auditory Cortical Responses Modeled with Multilinear Spectrotemporal Methods , 2008, The Journal of Neuroscience.

[35]  Eric D Young,et al.  Neural representation of spectral and temporal information in speech , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  Israel Nelken,et al.  The Effects of Background Noise on the Neural Responses to Natural Sounds in Cat Primary Auditory Cortex , 2007, Frontiers Comput. Neurosci..

[37]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[38]  J. Guinan Olivocochlear Efferents: Anatomy, Physiology, Function, and the Measurement of Efferent Effects in Humans , 2006, Ear and hearing.

[39]  Nigel P. Cooper,et al.  Efferent‐mediated control of basilar membrane motion , 2006, The Journal of physiology.

[40]  Katherine I. Nagel,et al.  Temporal Processing and Adaptation in the Songbird Auditory Forebrain , 2006, Neuron.

[41]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[42]  I. Dean,et al.  Neural population coding of sound level adapts to stimulus statistics , 2005, Nature Neuroscience.

[43]  Anne Hsu,et al.  Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds , 2005, Nature Neuroscience.

[44]  Sarah M N Woolley,et al.  Processing of modulated sounds in the zebra finch auditory midbrain: responses to noise, frequency sweeps, and sinusoidal amplitude modulations. , 2005, Journal of neurophysiology.

[45]  D. H. Louage,et al.  Enhanced Temporal Response Properties of Anteroventral Cochlear Nucleus Neurons to Broadband Noise , 2005, The Journal of Neuroscience.

[46]  M. Sutter Spectral processing in the auditory cortex. , 2005, International review of neurobiology.

[47]  J. Eggermont,et al.  Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex , 2004, Hearing Research.

[48]  C E Schreiner,et al.  Neural processing of amplitude-modulated sounds. , 2004, Physiological reviews.

[49]  C. Schreiner,et al.  Short-term adaptation of auditory receptive fields to dynamic stimuli. , 2004, Journal of neurophysiology.

[50]  Eero P. Simoncelli,et al.  To appear in: The New Cognitive Neurosciences, 3rd edition Editor: M. Gazzaniga. MIT Press, 2004. Characterization of Neural Responses with Stochastic Stimuli , 2022 .

[51]  Lee M. Miller,et al.  Naturalistic Auditory Contrast Improves Spectrotemporal Coding in the Cat Inferior Colliculus , 2003, The Journal of Neuroscience.

[52]  N. C. Singh,et al.  Modulation spectra of natural sounds and ethological theories of auditory processing. , 2003, The Journal of the Acoustical Society of America.

[53]  Christoph E Schreiner,et al.  Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. , 2003, Journal of neurophysiology.

[54]  M. Merzenich,et al.  Changes of AI receptive fields with sound density. , 2002, Journal of neurophysiology.

[55]  I. Nelken,et al.  Responses of Neurons in Cat Primary Auditory Cortex to Bird Chirps: Effects of Temporal and Spectral Context , 2002, The Journal of Neuroscience.

[56]  N. Kraus,et al.  Neurobiologic responses to speech in noise in children with learning problems: deficits and strategies for improvement , 2001, Clinical Neurophysiology.

[57]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[58]  M. Semple,et al.  Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. , 2000, Journal of neurophysiology.

[59]  M. Merzenich,et al.  Optimizing sound features for cortical neurons. , 1998, Science.

[60]  B. May,et al.  Effects of bilateral olivocochlear lesions on vowel formant discrimination in cats , 1998, Hearing Research.

[61]  B. Kollmeier,et al.  Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. , 1997, The Journal of the Acoustical Society of America.

[62]  T. Dau Modeling auditory processing of amplitude modulation , 1997 .

[63]  Malcolm Slaney,et al.  An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank , 1997 .

[64]  Hagai Attias,et al.  Temporal Low-Order Statistics of Natural Sounds , 1996, NIPS.

[65]  M. Ruggero Responses to sound of the basilar membrane of the mammalian cochlea , 1992, Current Opinion in Neurobiology.

[66]  T. Yin,et al.  Responses to amplitude-modulated tones in the auditory nerve of the cat. , 1992, The Journal of the Acoustical Society of America.

[67]  Brian R Glasberg,et al.  Derivation of auditory filter shapes from notched-noise data , 1990, Hearing Research.

[68]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[69]  A. Rees,et al.  Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broadband noise. , 1989, The Journal of the Acoustical Society of America.

[70]  Adrian Rees,et al.  Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds , 1987, Hearing Research.

[71]  A. Rees,et al.  Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man , 1986, Hearing Research.

[72]  M. D. Wang,et al.  Consonant confusions in noise: a study of perceptual features. , 1973, The Journal of the Acoustical Society of America.

[73]  G. A. Miller,et al.  An Analysis of Perceptual Confusions Among Some English Consonants , 1955 .