Fuzzy hypothesis testing for a population proportion based on set-valued information

Abstract In this paper we propose fuzzy hypothesis testing for a proportion with crisp data as the exact generalized one-tailed hypergeometric test with fuzzy (non-)complementary hypotheses, and incorporate the conventional hypergeometric test with crisp hypotheses into its framework. In particular, we formulate hypotheses as ontic or epistemic (fuzzy) sets, since we assume that presumptions regarding the true population proportion can be expressed in the conjunctive or disjunctive reading. Further, we suggest modeling of membership functions in terms of cost or frequency due to considerations of user's priorities or incomplete knowledge in relation to hypotheses formulation. Considering a hypothesis as union of its crisp and fuzzy areas, we illustrate via real-life examples that in contrast to classical test theory, fuzzy hypothesis testing provides an additional partial and gradual consideration of the indifference zone for both complementary and non-complementary hypotheses. The test concept is introduced for both test methods, a test of significance and an alternative test, and leads to a crisp test decision considering further cost aspects like the sample size. The generalized error criteria are derived and interpreted in relation to both hypotheses. Additionally, a corresponding sensitivity analysis is presented for one of the most promising test types.

[1]  Martin Holena,et al.  Fuzzy hypotheses testing in the framework of fuzzy logic , 2004, Fuzzy Sets Syst..

[2]  Bernhard F. Arnold Testing fuzzy hypotheses with crisp data , 1998, Fuzzy Sets Syst..

[3]  Wolfgang Spohn,et al.  A general non-probabilistic theory of inductive reasoning , 2013, UAI.

[4]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[5]  G. L. S. Shackle,et al.  Decision Order and Time in Human Affairs , 1962 .

[6]  Przemyslaw Grzegorzewski,et al.  Testing statistical hypotheses with vague data , 2000, Fuzzy Sets Syst..

[7]  Iickho Song,et al.  A fuzzy decision problem based on the generalized Neyman-Pearson criterion , 1992 .

[8]  Jean J. Saade,et al.  Fuzzy hypothesis testing with hybrid data , 1990 .

[9]  R. Viertl,et al.  Testing hypotheses with fuzzy data: The fuzzy p-value , 2004 .

[10]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[11]  A. Parchami,et al.  Fuzzy p-value in testing fuzzy hypotheses with crisp data , 2008 .

[12]  R. Viertl,et al.  Minimax test for fuzzy hypotheses , 2018 .

[13]  Inés Couso,et al.  Kendall's rank correlation on quantized data: An interval-valued approach , 2017, Fuzzy Sets Syst..

[14]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[15]  Olgierd Hryniewicz,et al.  Possibilistic decisions and fuzzy statistical tests , 2006, Fuzzy Sets Syst..

[16]  Douglas C. Montgomery,et al.  Statistical quality control : a modern introduction , 2009 .

[17]  Didier Dubois,et al.  The three semantics of fuzzy sets , 1997, Fuzzy Sets Syst..

[18]  E. Hisdal Are grades of membership probabilities , 1988 .

[19]  Martin Holena,et al.  Fuzzy hypotheses for GUHA implications , 1998, Fuzzy Sets Syst..

[20]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[21]  S. Mahmoud Taheri,et al.  Neyman–Pearson Lemma for Fuzzy Hypotheses Testing with Vague Data , 2006 .

[22]  R. Giles The concept of grade of membership , 1988 .

[23]  Thierry Denoeux,et al.  Nonparametric rank-based statistics and significance tests for fuzzy data , 2005, Fuzzy Sets Syst..

[24]  A. Parchami,et al.  Testing fuzzy hypotheses based on vague observations: a p-value approach , 2012 .

[25]  Inés Couso,et al.  Generalizing the Wilcoxon rank-sum test for interval data , 2015, Int. J. Approx. Reason..

[26]  Didier Dubois,et al.  Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets , 2012, Fuzzy Sets Syst..

[27]  Sébastien Destercke,et al.  Kolmogorov-Smirnov Test for Interval Data , 2014, IPMU.

[28]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[29]  Didier Dubois,et al.  Statistical reasoning with set-valued information: Ontic vs. epistemic views , 2014, Int. J. Approx. Reason..

[30]  Jean J. Saade,et al.  Extension of fuzzy hypothesis testing with hybrid data , 1994 .

[31]  Bernhard F. Arnold,et al.  An approach to fuzzy hypothesis testing , 1996 .

[32]  Seyed Mahmoud Taheri,et al.  A Bayesian approach to fuzzy hypotheses testing , 2001, Fuzzy Sets Syst..

[33]  Ronald R. Yager,et al.  Set-based representations of conjunctive and disjunctive knowledge , 1987, Inf. Sci..

[34]  J. Behboodian,et al.  Neyman-Pearson Lemma for fuzzy hypotheses testing , 1999 .

[35]  B. S. Gildeh,et al.  A Simple but Efficient Approach for Testing Fuzzy Hypotheses , 2016 .

[36]  Tadashi Imaizumi,et al.  A fuzzy statistical test of fuzzy hypotheses , 1993 .

[37]  Witold Lipski,et al.  On Databases with Incomplete Information , 1981, JACM.

[38]  Inés Couso,et al.  Defuzzification of Fuzzy p-Values , 2008, SMPS.

[39]  Seyed Mahmoud Taheri,et al.  Fuzzy Hypotheses Testing with Fuzzy Data: A Bayesian Approach , 2002, AFSS.

[40]  Olgierd Hryniewicz Statistical properties of the fuzzy p-value , 2018, Int. J. Approx. Reason..

[41]  Thierry Denoeux,et al.  Representing uncertainty on set-valued variables using belief functions , 2010, Artif. Intell..

[42]  Przemysław Grzegorzewski,et al.  Testing fuzzy hypotheses with vague data , 2002 .