Darboux transformation and Hamiltonian structure for the Jaulent-Miodek hierarchy

[1]  Ying Liu,et al.  Wronskian solutions and integrability for a generalized variable-coefficient forced Korteweg–de Vries equation in fluids , 2012 .

[2]  Ying Liu,et al.  Soliton management for a variable-coefficient modified Korteweg-de Vries equation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Ying Liu,et al.  Solitonic propagation and interaction for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Yi-Tian Gao,et al.  Amplification of nonautonomous solitons in the Bose-Einstein condensates and nonlinear optics , 2011 .

[5]  Yi-Tian Gao,et al.  Odd-Soliton-Like Solutions for the Variable-Coefficient Variant Boussinesq Model in the Long Gravity Waves , 2010 .

[6]  Xi-Xiang Xu An integrable coupling family of Merola-Ragnisco-Tu lattice systems, its Hamiltonian structure and related nonisospectral integrable lattice family , 2010 .

[7]  P. Bracken Integrable systems of partial differential equations determined by structure equations and Lax pair , 2009, 0907.0266.

[8]  Ying Liu,et al.  Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Yi-Tian Gao,et al.  Inelastic interactions and double Wronskian solutions for the Whitham–Broer–Kaup model in shallow water , 2009 .

[10]  Fajun Yu,et al.  Integrable coupling system of fractional soliton equation hierarchy , 2009 .

[11]  Abdul-Majid Wazwaz,et al.  Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models generated by the Jaulent–Miodek hierarchy , 2009 .

[12]  Hong-Xiang Yang,et al.  Soliton solutions by Darboux transformation for a Hamiltonian lattice system , 2009 .

[13]  V. Vasumathi,et al.  Perturbed soliton-like molecular excitations in a deformed DNA chain , 2008 .

[14]  D. Kaup,et al.  Inverse scattering for an AKNS problem with rational reflection coefficients , 2008 .

[15]  Soliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Two hierarchies of multi-component Kaup–Newell equations and theirs integrable couplings , 2008 .

[17]  P. Santini,et al.  The remarkable relations among PDEs integrable by the inverse spectral transform method, by the method of characteristics and by the Hopf–Cole transformation , 2008 .

[18]  Lingjun Zhou Darboux transformation for the non-isospectral AKNS hierarchy and its asymptotic property , 2007, 0710.0430.

[19]  T. Fukuyama,et al.  Gauge transformations and symmetries of integrable systems , 2007, 0705.3530.

[20]  Jinping Tian,et al.  Exact bright soliton solution for a family of coupled higher-order nonlinear Schrödinger equation in inhomogeneous optical fiber media , 2007 .

[21]  Yufeng Zhang,et al.  A multi-component matrix loop algebra and the multi-component Kaup–Newell (KN) hierarchy, as well as its integrable coupling system , 2007 .

[22]  Jie Ji,et al.  Two types of new integrable decompositions of the Kaup–Newell equation , 2006 .

[23]  Deng-yuan Chen,et al.  Soliton solutions to the 3rd nonisospectral AKNS system , 2006 .

[24]  C. Dai,et al.  New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients , 2006 .

[25]  K. Porsezian,et al.  Optical solitons in some deformed MB and NLS¿MB equations , 2006 .

[26]  Darboux transformation and soliton solutions for the Boiti?Pempinelli?Tu (BPT) hierarchy , 2005 .

[27]  J. Garnier,et al.  Dynamical stabilization of solitons in cubic-quintic nonlinear Schrödinger model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  M. P. Barnett,et al.  Symbolic calculation in chemistry: Selected examples , 2004 .

[29]  A. Peacock,et al.  Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. , 2003, Physical review letters.

[30]  Cosymplectic reduction of constrained systems with symmetry , 2002 .

[31]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[32]  Xianguo Geng,et al.  Quasi-periodic solutions for some (2 + 1)-dimensional integrable models generated by the Jaulent-Miodek hierarchy , 2001 .

[33]  Engui Fan,et al.  Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation , 2000 .

[34]  Hirokazu Kubota,et al.  Recent progress in soliton transmission technology. , 2000, Chaos.

[35]  X. Hu,et al.  Two integrable differential-difference equations exhibiting soliton solutions of the Kaup–Kupershmidt equation type , 2000 .

[36]  Hie-Tae Moon,et al.  Soliton-kink interactions in a generalized nonlinear Schrödinger system , 2000 .

[37]  W. Xue,et al.  The bi-Hamiltonian structures of some new Lax integrable hierarchies associated with 3 × 3 matrix spectral problems , 1997 .

[38]  Yehuda B. Band,et al.  Optical Solitary Waves in the Higher Order Nonlinear Schrödinger Equation , 1996, patt-sol/9612004.

[39]  Dengyuan Chen,et al.  Lie algebraic structures of (1+1)‐dimensional Lax integrable systems , 1996 .

[40]  K. Porsezian Generalized x-dependent modified Korteweg-de Vries equation: Painlevé analysis, Bäcklund transformation and soliton solutions , 1996 .

[41]  Yunbo Zeng,et al.  Separability and dynamical r-matrix for the constrained flows of the Jaulent-Miodek hierarchy , 1995, solv-int/9509009.

[42]  Wen-Xiu Ma,et al.  An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems , 1994 .

[43]  Nakayama,et al.  Integrability and the motion of curves. , 1992, Physical review letters.

[44]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[45]  Tu Gui-Zhang,et al.  On Liouville integrability of zero-curvature equations and the Yang hierarchy , 1989 .

[46]  A. Fokas,et al.  Recursion operators and bi-Hamiltonian structures in multidimensions. I , 1988 .

[47]  C. Thompson,et al.  Integrable mappings and soliton equations , 1988 .

[48]  M. Tabor,et al.  A unified approach to Painleve´ expansions , 1987 .

[49]  D. Levi,et al.  A NEW NONLINEAR SCHRODINGER EQUATION, ITS HIERARCHY AND N SOLITON SOLUTIONS , 1984 .

[50]  R. Meinel,et al.  General N-soliton solution of the AKNS class on arbitrary background , 1984 .

[51]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[52]  Kiyoshi Sogo,et al.  GAUGE TRANSFORMATIONS IN SOLITON THEORY , 1983 .

[53]  B. Konopelchenko On the adjoint representation for spectral problems and its relation with the Akns-method, gauge transformations and Riemann problem , 1983 .

[54]  C. Laddomada,et al.  Bäcklund transformations for the jaulent-miodek equations , 1982 .

[55]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[56]  L. Alonso,et al.  Hamiltonian formulation for the Jaulent-Miodek family of nonlinear evolution equations , 1980 .

[57]  Kimiaki Konno,et al.  New Integrable Nonlinear Evolution Equations , 1979 .

[58]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[59]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[60]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[61]  M. Ablowitz,et al.  Nonlinear-evolution equations of physical significance , 1973 .

[62]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[63]  S. Mccall,et al.  Self-Induced Transparency by Pulsed Coherent Light , 1967 .