Decision Tree-based Hybrid Multiprocessor Task Scheduling for the Cyber-Physical System

Scheduling is a critical process in cyber-physical systems to ensure the computation will be over within the physical system's deadline. Under the cyber-physical system, the processor is distributive and hydrogenous. Less latency task scheduling under this distributive cyberphysical system with a hydrogenous processor and resource is challenging. This article presents a decision tree based less complex mechanism of task scheduling in a heterogeneous processor environment this proposed mechanism model the tasks and the processor resource, current load level, their individual computational capability, memory availability, communication delay in the distributive system to move the task from one point to another point is taken into account for the scheduling purpose the numerical results prove that the proposed mechanism able to schedule the task quickly and with more task deadline meet the ratio.