Modeling of pyrolytic laser‐assisted chemical vapor deposition: Mass transfer and kinetic effects influencing the shape of the deposit

The laser‐assisted chemical vapor deposition of metals is modeled. The case of pyrolytic deposition induced by a continuous laser source is considered. The heat transfer in the solid substrate is considered to be transient, while the gas‐phase heat and mass transfer are assumed to be in the quasi‐steady state. The model accommodates the use of temperature‐dependent physical properties and the occurrence of irregularly shaped deposits. The modeling equations are solved by a finite element approach which is briefly described. Volcanolike deposits are predicted under certain conditions of gas pressure and laser intensity. Model predictions show that depletion effects and adsorption‐desorption phenomena are major factors in influencing the occurrence of volcanolike deposits.

[1]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[2]  J. Oxley,et al.  Kinetics of the heterogeneous decomposition of nickel tetracarbonyl , 1967 .

[3]  James J. Carberry,et al.  Chemical and catalytic reaction engineering , 1976 .

[4]  Melvin Lax,et al.  Temperature rise induced by a laser beam , 1977 .

[5]  J. Z. Zhu,et al.  The finite element method , 1977 .

[6]  T. R. Anthony,et al.  Heat treating and melting material with a scanning laser or electron beam , 1977 .

[7]  James F. Gibbons,et al.  Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam , 1980 .

[8]  K. Morgan,et al.  Recent advances in numerical methods in fluids , 1980 .

[9]  Susan D. Allen,et al.  Laser chemical vapor deposition: A technique for selective area deposition , 1981 .

[10]  I. Herman,et al.  Wafer-Scale Laser Lithography: I. Pyrolytic Deposition of Metal Microstructures , 1982 .

[11]  S. Allen,et al.  Direct Writing Using Laser Chemical Vapor Deposition , 1982 .

[12]  J. Tsao,et al.  Laser Fabrication of Microstructures: Effect of Geometrical Scaling on Chemical Reaction Rates , 1982 .

[13]  I. Calder,et al.  Modeling of cw laser annealing of multilayer structures , 1982 .

[14]  S. Gupta,et al.  Temperature profiles in a two-component heterogeneous system heated with a cw laser , 1982 .

[15]  J. Flaherty,et al.  An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations , 1982 .

[16]  R. Hendel,et al.  Temperature profiles induced by a scanning cw laser beam , 1982 .

[17]  H. Cline An analysis of the process of recrystallization of silicon thin films with either a scanning laser or strip heater , 1983 .

[18]  R. Pease,et al.  Temperature profiles in solid targets irradiated with finely focused beams , 1983 .

[19]  Klaus Piglmayer,et al.  Temperature Distributions in CW Laser Induced Pyrolytic Deposition , 1983 .

[20]  Daniel J. Ehrlich,et al.  A review of laser–microchemical processing , 1983 .

[21]  Dieter Bäuerle,et al.  Laser Processing and Diagnostics , 1984 .

[22]  D. Bäuerle,et al.  Lateral growth rates in laser CVD of microstructures , 1984 .

[23]  S. Kishida,et al.  Laser induced metal deposition from organometallic solution , 1984 .

[24]  F. Houle,et al.  Laser chemical vapor deposition of copper , 1985 .

[25]  T. H. Baum,et al.  Laser chemical vapor deposition of gold , 1985 .

[26]  R. Salathé,et al.  Laser generated microstructures , 1985 .

[27]  E. Liarokapis,et al.  Temperature rise induced by a cw laser beam revisited , 1985 .

[28]  T. H. Baum,et al.  LCVD of copper: Deposition rates and deposit shapes , 1986 .

[29]  E. F. Elshehawey,et al.  Heating a slab induced by a time‐dependent laser irradiance—An exact solution , 1986 .

[30]  T. H. Baum,et al.  Laser chemical vapor deposition of gold: Part II , 1986 .

[31]  Susan D. Allen,et al.  Transient Nonlinear Laser Heating and Deposition: A Comparison of Theory and Experiment , 1986, Topical Meeting on Microphysics of Surfaces, Beams, and Adsorbates.