EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT

The purpose of this paper is to extend the mortar finite element method to handle the unilateral contact model between two deformable bodies. The corresponding variational inequality is approximated using finite element meshes which do not fit on the contact zone. The mortar technique allows one to match these independent discretizations of each solid and takes into account the unilateral contact conditions in a convenient way. By using an adaptation of Falk's lemma and a bootstrap argument, we give an upper bound of the convergence rate similar to the one already obtained for compatible meshes.

[1]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[2]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[3]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[4]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[5]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[6]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[7]  Catherine Mavriplis,et al.  Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques , 1989 .

[8]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[9]  Yvon Maday,et al.  Coupling finite element and spectral methods: first results , 1990 .

[10]  M. Moussaoui,et al.  Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .

[11]  Faker Ben Belgacem Discrétisations 3D non conformes par la méthode de décomposition de domaine des éléments avec joints : analyse mathématique et mise en oeuvre pour le problème de Poisson , 1993 .

[12]  Z. Zhong Finite Element Procedures for Contact-Impact Problems , 1993 .

[13]  Yvon Maday,et al.  A spectral element methodology tuned to parallel implementations , 1994 .

[14]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[15]  O. Pironneau,et al.  A fast solver for Navier-Stokes equations in the lamina regime using mortar finite element and boundary element methods , 1995 .

[16]  P. Tallec,et al.  Domain decomposition with nonmatching grids: augmented Lagrangian approach , 1995 .

[17]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .