Eigenfunction approach to the persistent random walk in two dimensions
暂无分享,去创建一个
[1] J. C. Kluyver,et al. A local probability problem , 1905 .
[2] KARL PEARSON,et al. The Problem of the Random Walk , 1905, Nature.
[3] H. Kramers,et al. Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .
[4] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[5] G. A. Watson. A treatise on the theory of Bessel functions , 1944 .
[6] L. Treloar. The statistical length of long-chain molecules , 1946 .
[7] Elliott W. Montroll,et al. On the Theory of Markoff Chains , 1947 .
[8] O. Kratky,et al. Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .
[9] A. Sommerfeld. Partial Differential Equations in Physics , 1949 .
[10] M. Volkenstein,et al. Statistical mechanics of chain molecules , 1969 .
[11] R Barakat,et al. Isotropic random flights , 1973 .
[12] G. Weiss,et al. A descriptive theory of cell migration on surfaces. , 1974, Journal of theoretical biology.
[13] G. Weiss,et al. A generalized Pearson random walk allowing for bias , 1974 .
[14] R. Nossal. Stochastic aspects of biological locomotion , 1983 .
[15] Bruce J. West,et al. Random walks and their applications in the physical and biological sciences , 1984 .
[16] G. Weiss,et al. Joint densities for random walks in the plane , 1987 .
[17] G. Weiss,et al. Probabilistic Methods in Crystal Structure Analysis , 1990 .
[18] George H. Weiss,et al. Some two and three-dimensional persistent random walks , 1993 .
[19] G. Weiss. Aspects and Applications of the Random Walk , 1994 .
[20] George H. Weiss,et al. Introduction to Crystallographic Statistics , 1995 .
[21] Tojo,et al. Correlated random walk in continuous space. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[22] Radial Distribution Function of Semiflexible Polymers. , 1996, Physical review letters.
[23] H. Larralde. Transport properties of a two-dimensional “chiral” persistent random walk , 1997 .
[24] W. H. Neill,et al. Modelling animal movement as a persistent random walk in two dimensions: expected magnitude of net displacement , 2000 .
[25] G. Gompper,et al. Semiflexible polymer in a uniform force field in two dimensions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] Hans Jürgen Kreuzer,et al. Stretching response of discrete semiflexible polymers , 2003 .