Eigenfunction approach to the persistent random walk in two dimensions

[1]  J. C. Kluyver,et al.  A local probability problem , 1905 .

[2]  KARL PEARSON,et al.  The Problem of the Random Walk , 1905, Nature.

[3]  H. Kramers,et al.  Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .

[4]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[5]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[6]  L. Treloar The statistical length of long-chain molecules , 1946 .

[7]  Elliott W. Montroll,et al.  On the Theory of Markoff Chains , 1947 .

[8]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .

[9]  A. Sommerfeld Partial Differential Equations in Physics , 1949 .

[10]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[11]  R Barakat,et al.  Isotropic random flights , 1973 .

[12]  G. Weiss,et al.  A descriptive theory of cell migration on surfaces. , 1974, Journal of theoretical biology.

[13]  G. Weiss,et al.  A generalized Pearson random walk allowing for bias , 1974 .

[14]  R. Nossal Stochastic aspects of biological locomotion , 1983 .

[15]  Bruce J. West,et al.  Random walks and their applications in the physical and biological sciences , 1984 .

[16]  G. Weiss,et al.  Joint densities for random walks in the plane , 1987 .

[17]  G. Weiss,et al.  Probabilistic Methods in Crystal Structure Analysis , 1990 .

[18]  George H. Weiss,et al.  Some two and three-dimensional persistent random walks , 1993 .

[19]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[20]  George H. Weiss,et al.  Introduction to Crystallographic Statistics , 1995 .

[21]  Tojo,et al.  Correlated random walk in continuous space. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Radial Distribution Function of Semiflexible Polymers. , 1996, Physical review letters.

[23]  H. Larralde Transport properties of a two-dimensional “chiral” persistent random walk , 1997 .

[24]  W. H. Neill,et al.  Modelling animal movement as a persistent random walk in two dimensions: expected magnitude of net displacement , 2000 .

[25]  G. Gompper,et al.  Semiflexible polymer in a uniform force field in two dimensions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Hans Jürgen Kreuzer,et al.  Stretching response of discrete semiflexible polymers , 2003 .