Efficient Combinatorial Optimization under Uncertainty. 1. Algorithmic Development

This paper presents hierarchical improvements to the combinatorial stochastic annealing algorithm using a new and efficient sampling technique. The Hammersley sequence sampling technique is used for updating discrete combinations, reducing the Markov chain length, determining the number of samples automatically, and embedding better confidence intervals of the samples. The improved algorithm, Hammersley stochastic annealing, can significantly improve computational efficiency over traditional stochastic programming methods. Three distinctive example functions considered proved the efficiency improvement of Hammersley stochastic annealing to be up to 99.3% better than the traditional counterparts. Thus, this new method can be a useful tool for large-scale combinatorial stochastic programming problems. Application of this new algorithm to a real world problem of solvent selection under uncertainty is presented in part 2 of this series.

[1]  George B. Dantzig,et al.  Parallel processors for planning under uncertainty , 1990 .

[2]  Alexander Shapiro,et al.  On the Rate of Convergence of Optimal Solutions of Monte Carlo Approximations of Stochastic Programs , 2000, SIAM J. Optim..

[3]  Edward S. Rubin,et al.  Stochastic modeling of chemical processes , 1991 .

[4]  U. Diwekar,et al.  Stochastic annealing for synthesis under uncertainty , 1995 .

[5]  H. Szu Fast simulated annealing , 1987 .

[6]  Donald E. Knuth The art of computer programming: fundamental algorithms , 1969 .

[7]  Ronald L. Iman,et al.  Risk methodology for geologic disposal of radioactive waste: small sample sensitivity analysis techniques for computer models, with an application to risk assessment , 1980 .

[8]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[9]  Urmila M. Diwekar,et al.  Synthesis approach to the determination of optimal waste blends under uncertainty , 1999 .

[10]  Christopher C. Skiscim,et al.  Optimization by simulated annealing: A preliminary computational study for the TSP , 1983, WSC '83.

[11]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[12]  Urmila M. Diwekar,et al.  Synthesizing optimal waste blends , 1996 .

[13]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .

[14]  Rafiqul Gani,et al.  Design of environmentally benign processes: integration of solvent design and separation process synthesis , 1999 .

[15]  Urmila M. Diwekar,et al.  Process synthesis under uncertainty: A penalty function approach , 1996 .

[16]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[17]  Urmila M. Diwekar,et al.  Synthesizing optimal design configurations for a brayton cycle power plant , 1994 .

[18]  Christodoulos A. Floudas Generalized Benders Decomposition , 2009, Encyclopedia of Optimization.

[19]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[20]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1987, Math. Program..

[21]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.