Representation Theorems and the Semantics of Non-Classical Logics , and Applications to Automated

We give a uniform presentation of representation and decidability results related to the Kripke-style semantics of several non-classical logics. We show that a general representation theorem (which has as particular instances the representation theorems as algebras of sets for Boolean algebras, distributive lattices and semilattices) extends in a natural way to several classes of operators and allows to establish a relationship between algebraic and Kripke-style models. We illustrate the ideas on several examples. We conclude by showing how the Kripke-style models thus obtained can be used (if first-order axiomatizable) for automated theorem proving by resolution for some non-classical logics.

[1]  Angus Macintyre,et al.  Trends in Logic , 2001 .

[2]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[3]  Nuel D. Belnap,et al.  Entailment : the logic of relevance and necessity , 1975 .

[4]  Viorica Sofronie-Stokkermans,et al.  Resolution-based decision procedures for the universal theory of some classes of distributive lattices with operators , 2003, J. Symb. Comput..

[5]  Alasdair Urquhart,et al.  Duality for algebras of relevant logics , 1996, Stud Logica.

[6]  Frederic Brenton Fitch,et al.  A system of formal logic without an analogue to the curry W operator , 1936, Journal of Symbolic Logic.

[7]  Phokion G. Kolaitis,et al.  On the Decision Problem for Two-Variable First-Order Logic , 1997, Bulletin of Symbolic Logic.

[8]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[9]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[10]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[11]  Gerard Allwein,et al.  Kripke models for linear logic , 1993, Journal of Symbolic Logic.

[12]  J. Michael Dunn,et al.  Positive modal logic , 1995, Stud Logica.

[13]  Néstor G. Martínez A topological duality for some lattice ordered algebraic structures including ℓ-groups , 1994 .

[14]  Viorica Sofronie-Stokkermans Representation Theorems and Automated Theorem Proving in Non-Classical Logics , 1999 .

[15]  Michael Mortimer,et al.  On languages with two variables , 1975, Math. Log. Q..

[16]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[17]  A. N. Prior,et al.  Notes on the axiomatics of the propositional calculus , 1963, Notre Dame J. Formal Log..

[18]  Chrysafis Hartonas,et al.  Stone duality for lattices , 1997 .

[19]  Mai Gehrke,et al.  NON-CANONICITY OF MV-ALGEBRAS , 2002 .

[20]  Mai Gehrke,et al.  MONOTONE BOUDED DISTRIBUTIVE LATTICE EXPANSIONS , 2000 .

[21]  Wieslaw Szwast,et al.  On the decision problem for the guarded fragment with transitivity , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[22]  Margus Veanes,et al.  The two-variable guarded fragment with transitive relations , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[23]  Viorica Sofronie-Stokkermans Representation theorems and theorem proving in non-classical logics , 1999, Proceedings 1999 29th IEEE International Symposium on Multiple-Valued Logic (Cat. No.99CB36329).

[24]  Wendy MacCaull A note on Kripke semantics for residuated logic , 1996, Fuzzy Sets Syst..

[25]  Viorica Sofronie-Stokkermans,et al.  Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics I , 2000, Stud Logica.

[26]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[27]  W. Blok,et al.  On the structure of hoops , 2000 .

[28]  Viorica Sofronie-Stokkermans Priestley Duality for SHn-algebras and Applications to the Study of Kripke-style Models for SHn-logics , 2000 .

[29]  Brian A. Davey Duality Theory on Ten Dollars a Day , 1993 .

[30]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[31]  Rodney G. Downey Intervals and Sublattices of the r.e. Weak Truth Table Degrees, Part II: Nonbounding , 1989, Ann. Pure Appl. Log..

[32]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[33]  Viorica Sofronie-Stokkermans,et al.  On the Universal Theory of Varieties of Distributive Lattices with Operators: Some Decidability and Complexity Results , 1999, CADE.

[34]  Harald Ganzinger,et al.  A Resolution-Based Decision Procedure for Extensions of K4 , 1998, Advances in Modal Logic.

[35]  Viorica Sofronie-Stokkermans,et al.  Automated Theorem Proving by Resolution for Finitely-Valued Logics Based on Distributive Lattices with Operators , 2001 .

[36]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[37]  Chrysafis Hartonas,et al.  Duality for Lattice-Ordered Algebras and for Normal Algebraizable Logics , 1997, Stud Logica.

[38]  M. Fitting Intuitionistic logic, model theory and forcing , 1969 .

[39]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[40]  Robert Goldblatt,et al.  Semantic analysis of orthologic , 1974, J. Philos. Log..

[41]  Robert Goldblatt,et al.  Algebraic Polymodal Logic: A Survey , 2000, Log. J. IGPL.

[42]  Robert Goldblatt,et al.  Varieties of Complex Algebras , 1989, Ann. Pure Appl. Log..

[43]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[44]  M. Stone The theory of representations for Boolean algebras , 1936 .

[45]  Jan Łukasiewicz,et al.  Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls (micro) , 1930 .

[46]  Renate A. Schmidt Decidability by Resolution for Propositional Modal Logics , 2004, Journal of Automated Reasoning.

[47]  Hans Jürgen Ohlbach,et al.  Translation Methods for Non-Classical Logics: An Overview , 1993, Log. J. IGPL.

[48]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[49]  Roman Jakobson,et al.  Structure of Language and Its Mathematical Aspects , 1961 .

[50]  E. Schmidt,et al.  Contributions to lattice theory , 1983 .

[51]  Luisa Iturrioz Symmetrical Heyting Algebras with Operators , 1983, Math. Log. Q..

[52]  Alfred Tarski,et al.  Logic, Semantics, Metamathematics: Papers from 1923 to 1938 , 1958 .

[53]  M. Aslam Ideal theory of BCK-algebra , 1976 .

[54]  Robert Goldblatt,et al.  Orthomodularity is not elementary , 1984, Journal of Symbolic Logic.

[55]  Alasdair Urquhart,et al.  A topological representation theory for lattices , 1978 .

[56]  Barkley Rosser Tarski A.. Über die Erweiterungen der unvollständigen Systeme des Aussagenkalküls, Ergebnisse eines mathematischen Kolloquiums , Heft 7, pp. 51–57. , 1936 .

[57]  Paul R. Halmos,et al.  Algebraic logic, I. Monadic boolean algebras , 1956 .

[58]  Isidore Fleischer,et al.  Every BCK-algebra is a set of residuables in an integral pomonoid , 1988 .

[59]  Richard Routley,et al.  Relevant logics and their rivals , 1982 .

[60]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .