Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1.

[1]  Xiaojuan Wang,et al.  Prevalence of quinolone resistance genes, copper resistance genes, and the bacterial communities in a soil-ryegrass system co-polluted with copper and ciprofloxacin. , 2018, Chemosphere.

[2]  A. Garg,et al.  Degradation of ciprofloxacin using Fenton's oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment. , 2018, Chemosphere.

[3]  Nhung Dang,et al.  Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy. , 2018, Chemosphere.

[4]  D. Barceló,et al.  Effects of subinhibitory ciprofloxacin concentrations on the abundance of qnrS and composition of bacterial communities from water supply reservoirs. , 2016, Chemosphere.

[5]  M. Tadé,et al.  Size-Tailored Porous Spheres of Manganese Oxides for Catalytic Oxidation via Peroxymonosulfate Activation , 2016 .

[6]  A. White,et al.  Production of Manganese Oxide Nanoparticles by Shewanella Species , 2016, Applied and Environmental Microbiology.

[7]  K. Hanna,et al.  Kinetics and Mechanisms of Ciprofloxacin Oxidation on Hematite Surfaces. , 2015, Environmental science & technology.

[8]  Jie Ma,et al.  Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel , 2015, Scientific Reports.

[9]  A. Simanova,et al.  Time-Resolved Investigation of Cobalt Oxidation by Mn(III)-Rich δ-MnO2 Using Quick X-ray Absorption Spectroscopy. , 2015, Environmental science & technology.

[10]  M. Tadé,et al.  New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures , 2015 .

[11]  Christina K. Remucal,et al.  A critical review of the reactivity of manganese oxides with organic contaminants. , 2014, Environmental science. Processes & impacts.

[12]  Yuxin Zhang,et al.  pH-Dependent Degradation of Methylene Blue via Rational-Designed MnO2 Nanosheet-Decorated Diatomites , 2014 .

[13]  A. S. Giri,et al.  Ciprofloxacin degradation from aqueous solution by Fenton oxidation: reaction kinetics and degradation mechanisms , 2014 .

[14]  B. Tebo,et al.  Oxidative UO2 dissolution induced by soluble Mn(III). , 2014, Environmental science & technology.

[15]  H. Johnson,et al.  Manganese (Mn) Oxidation Increases Intracellular Mn in Pseudomonas putida GB-1 , 2013, PloS one.

[16]  Cristina N Butterfield,et al.  Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase , 2013, Proceedings of the National Academy of Sciences.

[17]  I. Škorić,et al.  Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. , 2013, Chemosphere.

[18]  M. Tadé,et al.  Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. , 2013, Environmental science & technology.

[19]  James K. McCarthy,et al.  Elimination of Manganese(II,III) Oxidation in Pseudomonas putida GB-1 by a Double Knockout of Two Putative Multicopper Oxidase Genes , 2012, Applied and Environmental Microbiology.

[20]  Christoph Schlüter,et al.  Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms , 2011, Environmental toxicology and chemistry.

[21]  S. Wankel,et al.  Coupled biotic–abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides , 2011 .

[22]  M. Badawy,et al.  Photocatalytic oxidation of ciprofloxacin under simulated sunlight. , 2011, Journal of hazardous materials.

[23]  D. Sparks,et al.  Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction. , 2010, Environmental science & technology.

[24]  W. Verstraete,et al.  Diclofenac oxidation by biogenic manganese oxides. , 2010, Environmental science & technology.

[25]  J. Martínez,et al.  Environmental pollution by antibiotics and by antibiotic resistance determinants. , 2009, Environmental pollution.

[26]  Klaus Kümmerer,et al.  Antibiotics in the aquatic environment--a review--part I. , 2009, Chemosphere.

[27]  Liying Jiang,et al.  Oxidative Transformation of 17β-estradiol by MnO2 in Aqueous Solution , 2008, Archives of environmental contamination and toxicology.

[28]  K. Kümmerer Antibiotics in the aquatic environment--a review--part II. , 2009, Chemosphere.

[29]  W. Verstraete,et al.  Manganese‐oxidizing bacteria mediate the degradation of 17α‐ethinylestradiol , 2008, Microbial biotechnology.

[30]  Ching-Hua Huang,et al.  Kinetic modeling of oxidation of antibacterial agents by manganese oxide. , 2008, Environmental science & technology.

[31]  J. Dewulf,et al.  Ozonation of ciprofloxacin in water: HRMS identification of reaction products and pathways. , 2008, Environmental science & technology.

[32]  James K. McCarthy,et al.  Geomicrobiology of manganese(II) oxidation. , 2005, Trends in microbiology.

[33]  Ching-Hua Huang,et al.  Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. , 2005, Environmental science & technology.

[34]  B. Tebo,et al.  Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Lawrence P Wackett,et al.  How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. , 2005, FEMS microbiology reviews.

[36]  T. Beveridge,et al.  Intracellular manganese granules formed by a subsurface bacterium. , 2004, Environmental microbiology.

[37]  Karen J. Murray,et al.  Biogenic manganese oxides: Properties and mechanisms of formation , 2004 .

[38]  J. Tommassen,et al.  Identification of a novel Gsp‐related pathway required for secretion of the manganese‐oxidizing factor of Pseudomonas putida strain GB‐1 , 2003, Molecular microbiology.

[39]  E. Threlfall Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. , 2002, FEMS microbiology reviews.

[40]  P. Nico,et al.  Mn(III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on delta-MnO2. , 2001, Environmental science & technology.

[41]  J. Rotschafer,et al.  Application of fluoroquinolone pharmacodynamics. , 2000, The Journal of antimicrobial chemotherapy.

[42]  P. Nico,et al.  Importance of Mn(III) Availability on the Rate of Cr(III) Oxidation on δ-MnO2 , 2000 .

[43]  R. Luthy,et al.  Oxidation of aniline and other primary aromatic amines by manganese dioxide , 1990 .

[44]  P. Benfield,et al.  Ciprofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. , 1988, Drugs.

[45]  K. Nealson,et al.  Chemical and microbiological studies of sulfide‐mediated manganese reduction 1 , 1986 .

[46]  P. Brewer,et al.  COLORIMETRIC DETERMINATION OF MANGANESE IN ANOXIC WATERS1 , 1971 .