Goal-oriented space-time adaptivity for transient dynamics using a modal description of the adjoint solution
暂无分享,去创建一个
[1] J. Peraire,et al. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .
[2] Pedro Díez,et al. Modal‐based goal‐oriented error assessment for timeline‐dependent quantities in transient dynamics , 2013 .
[3] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .
[4] Pedro Díez,et al. An algorithm for mesh refinement and un-refinement in fast transient dynamics , 2013 .
[5] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[6] Pedro Díez,et al. Remeshing criteria and proper error representations for goal oriented h-adaptivity☆ , 2007 .
[7] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[8] Rolf Rannacher,et al. Finite element approximation of the acoustic wave equation: error control and mesh adaptation , 1999 .
[9] Antonio Huerta,et al. The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations , 2006 .
[10] Thomas J. R. Hughes,et al. Space-time finite element methods for second-order hyperbolic equations , 1990 .
[11] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[12] A. Huerta,et al. Computable exact bounds for linear outputs from stabilized solutions of the advection–diffusion–reaction equation , 2013 .
[13] Claes Johnson,et al. Computational Differential Equations , 1996 .
[14] Pedro Díez,et al. Exact Bounds for Linear Outputs of the Advection-Diffusion-Reaction Equation Using Flux-Free Error Estimates , 2009, SIAM J. Sci. Comput..
[15] Peter Hansbo,et al. Strategies for computing goal‐oriented a posteriori error measures in non‐linear elasticity , 2002 .
[16] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .
[17] O. C. Zienkiewicz,et al. Adaptive mesh generation for fluid mechanics problems , 2000 .
[18] R. Rannacher,et al. A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .
[19] Claes Johnson,et al. Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .
[20] Donald Estep,et al. Blockwise Adaptivity for Time Dependent Problems Based on Coarse Scale Adjoint Solutions , 2010, SIAM J. Sci. Comput..
[21] A. Huerta,et al. Bounds of functional outputs for parabolic problems. Part II: Bounds of the exact solution , 2008 .
[22] Departament de Matem,et al. Bounds of functional outputs for parabolic problems. Part I: Exact bounds of the Discontinuous Galerkin time discretization , 2007 .
[23] T. Hughes,et al. Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .
[24] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[25] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[26] Mark Yerry,et al. A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.
[27] Pedro Díez,et al. Subdomain-based flux-free a posteriori error estimators , 2006 .
[28] Rolf Rannacher,et al. Adaptive Galerkin Finite Element Methods for the Wave Equation , 2010, Comput. Methods Appl. Math..
[29] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[30] J. Tinsley Oden,et al. Extensions of goal-oriented error estimation methods to simulations of highly-nonlinear response of shock-loaded elastomer-reinforced structures , 2006 .
[31] Rolf Rannacher,et al. ADAPTIVE FINITE ELEMENT TECHNIQUES FOR THE ACOUSTIC WAVE EQUATION , 2001 .
[32] Ekkehard Ramm,et al. A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .