Goal-oriented space-time adaptivity for transient dynamics using a modal description of the adjoint solution

This article presents a space-time adaptive strategy for transient elastodynamics. The method aims at computing an optimal space-time discretization such that the computed solution has an error in the quantity of interest below a user-defined tolerance. The methodology is based on a goal-oriented error estimate that requires accounting for an auxiliary adjoint problem. The major novelty of this paper is using modal analysis to obtain a proper approximation of the adjoint solution. The idea of using a modal-based description was introduced in a previous work for error estimation purposes. Here this approach is used for the first time in the context of adaptivity. With respect to the standard direct time-integration methods, the modal solution of the adjoint problem is highly competitive in terms of computational effort and memory requirements. The performance of the proposed strategy is tested in two numerical examples. The two examples are selected to be representative of different wave propagation phenomena, one being a 2D bulky continuum and the second a 2D domain representing a structural frame.

[1]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[2]  Pedro Díez,et al.  Modal‐based goal‐oriented error assessment for timeline‐dependent quantities in transient dynamics , 2013 .

[3]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[4]  Pedro Díez,et al.  An algorithm for mesh refinement and un-refinement in fast transient dynamics , 2013 .

[5]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[6]  Pedro Díez,et al.  Remeshing criteria and proper error representations for goal oriented h-adaptivity☆ , 2007 .

[7]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[8]  Rolf Rannacher,et al.  Finite element approximation of the acoustic wave equation: error control and mesh adaptation , 1999 .

[9]  Antonio Huerta,et al.  The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations , 2006 .

[10]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[11]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[12]  A. Huerta,et al.  Computable exact bounds for linear outputs from stabilized solutions of the advection–diffusion–reaction equation , 2013 .

[13]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[14]  Pedro Díez,et al.  Exact Bounds for Linear Outputs of the Advection-Diffusion-Reaction Equation Using Flux-Free Error Estimates , 2009, SIAM J. Sci. Comput..

[15]  Peter Hansbo,et al.  Strategies for computing goal‐oriented a posteriori error measures in non‐linear elasticity , 2002 .

[16]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[17]  O. C. Zienkiewicz,et al.  Adaptive mesh generation for fluid mechanics problems , 2000 .

[18]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[19]  Claes Johnson,et al.  Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .

[20]  Donald Estep,et al.  Blockwise Adaptivity for Time Dependent Problems Based on Coarse Scale Adjoint Solutions , 2010, SIAM J. Sci. Comput..

[21]  A. Huerta,et al.  Bounds of functional outputs for parabolic problems. Part II: Bounds of the exact solution , 2008 .

[22]  Departament de Matem,et al.  Bounds of functional outputs for parabolic problems. Part I: Exact bounds of the Discontinuous Galerkin time discretization , 2007 .

[23]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[24]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[25]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[26]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[27]  Pedro Díez,et al.  Subdomain-based flux-free a posteriori error estimators , 2006 .

[28]  Rolf Rannacher,et al.  Adaptive Galerkin Finite Element Methods for the Wave Equation , 2010, Comput. Methods Appl. Math..

[29]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[30]  J. Tinsley Oden,et al.  Extensions of goal-oriented error estimation methods to simulations of highly-nonlinear response of shock-loaded elastomer-reinforced structures , 2006 .

[31]  Rolf Rannacher,et al.  ADAPTIVE FINITE ELEMENT TECHNIQUES FOR THE ACOUSTIC WAVE EQUATION , 2001 .

[32]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .