3-dimensional electrode patterning within a microfluidic channel using metal ion implantation.

The application of electrical fields within a microfluidic channel enables many forms of manipulation necessary for lab-on-a-chip devices. Patterning electrodes inside the microfluidic channel generally requires multi-step optical lithography. Here, we utilize an ion-implantation process to pattern 3D electrodes within a fluidic channel made of polydimethylsiloxane (PDMS). Electrode structuring within the channel is achieved by ion implantation at a 40 degrees angle with a metal shadow mask. The advantages of three-dimensional structuring of electrodes within a fluidic channel over traditional planar electrode designs are discussed. Two possible applications are presented: asymmetric particles can be aligned in any of the three axial dimensions with electro-orientation; colloidal focusing and concentration within a fluidic channel can be achieved through dielectrophoresis. Demonstrations are shown with E. coli, a rod shaped bacteria, and indicate the potential that ion-implanted microfluidic channels have for manipulations in the context of lab-on-a-chip devices.

[1]  Zhe-Xue Lu,et al.  Bio-inspired chemical reactors for growing aligned gold nanoparticle-like wires. , 2009, Chemical communications.

[2]  David Erickson,et al.  Optothermorheological flow manipulation. , 2009, Optics letters.

[3]  P. Dubois,et al.  Metal Ion Implantation for the Fabrication of Stretchable Electrodes on Elastomers , 2009 .

[4]  Seong-Won Nam,et al.  Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image , 2008 .

[5]  Samuel Rosset,et al.  Mechanical Characterization of a Dielectric Elastomer Microactuator With Ion-Implanted Electrodes , 2008 .

[6]  Demetri Psaltis,et al.  Chemical separations by bubble-assisted interphase mass-transfer. , 2008, Analytical chemistry.

[7]  Peidong Yang,et al.  Dynamic manipulation and separation of individual semiconducting and metallic nanowires. , 2008, Nature photonics.

[8]  Jan C T Eijkel,et al.  Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels. , 2008, Lab on a chip.

[9]  Noo Li Jeon,et al.  Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. , 2007, Lab on a chip.

[10]  Demetri Psaltis,et al.  Optical detection of asymmetric bacteria utilizing electro-orientation , 2006, SPIE Optics + Photonics.

[11]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[12]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[13]  Rashid Bashir,et al.  A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. , 2006, Lab on a chip.

[14]  E. Muto,et al.  Dielectric measurement of individual microtubules using the electroorientation method. , 2006, Biophysical journal.

[15]  Marc J Madou,et al.  3‐D electrode designs for flow‐through dielectrophoretic systems , 2005, Electrophoresis.

[16]  J.A. Schwartz,et al.  A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications , 2005, Journal of Microelectromechanical Systems.

[17]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[18]  M. Gijs,et al.  Plastic micropump with ferrofluidic actuation , 2005, Journal of Microelectromechanical Systems.

[19]  Ciprian Iliescu,et al.  Fabrication of a dielectrophoretic chip with 3D silicon electrodes , 2005 .

[20]  D. Erickson,et al.  Integrated microfluidic devices , 2004 .

[21]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[22]  Sigurd Wagner,et al.  Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays , 2003 .

[23]  T. Jones,et al.  Basic theory of dielectrophoresis and electrorotation , 2003, IEEE Engineering in Medicine and Biology Magazine.

[24]  Microfluidic etching driven by capillary forces for rapid prototyping of gold structures , 2003 .

[25]  Frederick F Becker,et al.  Microsample preparation by dielectrophoresis: isolation of malaria. , 2002, Lab on a chip.

[26]  Xie Hong-kun,et al.  Nature of Science , 2002 .

[27]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[28]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[29]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[30]  T. Jones,et al.  Electro-orientation of ellipsoidal erythrocytes. Theory and experiment. , 1993, Biophysical journal.