Fp is locally like ℂ

Vu, Wood and Wood showed that any finite set S in a characteristic zero integral domain can be mapped to F_p, for infinitely many primes p, while preserving finitely many algebraic incidences of S. In this note we show that the converse essentially holds, namely any small subset of F_p can be mapped to some finite algebraic extension of Q, while preserving bounded algebraic relations. This answers a question of Vu, Wood and Wood. We give several applications, in particular we show that for small subsets of F_p, the Szemer\'edi-Trotter theorem holds with optimal exponent 4/3, and we improve the previously best-known sum-product estimate in F_p. We also give an application to an old question of R\'enyi. The proof of the main result is an application of elimination theory and is similar in spirit with the proof of the quantitative Hilbert Nullstellensatz.

[1]  Andrzej Schinzel,et al.  On the number of terms of a power of a polynomial. , 1987 .

[2]  József Solymosi,et al.  Bounding multiplicative energy by the sumset , 2009 .

[3]  Csaba D. Tóth The Szemerédi-Trotter theorem in the complex plane , 2015, Comb..

[4]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.

[5]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[6]  Timothy G. F. Jones Further improvements to incidence and Beck-type bounds over prime finite fields , 2012, 1206.4517.

[7]  Vsevolod F. Lev,et al.  Rectification Principles in Additive Number Theory , 1998, Discret. Comput. Geom..

[8]  Misha Rudnev,et al.  On New Sum-Product-Type Estimates , 2013, SIAM J. Discret. Math..

[9]  Jean Bourgain,et al.  On a variant of sum-product estimates and explicit exponential sum bounds in prime fields , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  M. Garaev Fe b 20 07 An explicit sum-product estimate in F p , 2007 .

[11]  P. ERDijS,et al.  ON THE NUMBER OF TERMS OF THE SQUARE OF A POLYNOMIAL BY , 2002 .

[12]  Quadratic Algebras Related to the Bi-Hamiltonian Operad , 2006, math/0607289.

[13]  M. Rudnev An improved sum-product inequality in fields of prime order , 2010, 1011.2738.

[14]  Joshua Zahl,et al.  A Szemerédi–Trotter Type Theorem in $$\mathbb {R}^4$$R4 , 2012, Discret. Comput. Geom..

[15]  Misha Rudnev,et al.  An explicit incidence theorem in p , 2010, 1001.1980.

[16]  George E. Collins Polynomial Remainder Sequences and Determinants , 1966 .

[17]  Liangpan Li Slightly improved sum-product estimates in fields of prime order , 2009, 0907.2051.

[18]  Yong-Gao Chen,et al.  On sums and products of integers , 1999 .

[19]  Van H. Vu,et al.  Mapping incidences , 2007, J. Lond. Math. Soc..

[20]  Robert Hermann Linear systems theory and introductory algebraic geometry , 1974 .

[21]  György Elekes,et al.  On the number of sums and products , 1997 .

[22]  Kevin Ford,et al.  Sums and Products from a Finite Set of Real Numbers , 1998 .

[23]  Ben Green,et al.  Sets with Small Sumset and Rectification , 2004, math/0403338.

[24]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[25]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[26]  József Solymosi,et al.  An Incidence Theorem in Higher Dimensions , 2012, Discret. Comput. Geom..

[27]  Mei-Chu Chang,et al.  A sum-product estimate in algebraic division algebras , 2005 .

[28]  James H. Davenport,et al.  Polynomials whose powers are sparse , 1991 .

[29]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[30]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[31]  Mei-Chu Chang,et al.  Factorization in generalized arithmetic progressions and application to the Erdős-Szemerédi sum-product problems , 2003 .

[32]  Chun-Yen Shen,et al.  A slight improvement to Garaev’s sum product estimate , 2007, math/0703614.