Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: origin, diagenesis, and implications

Samples from the Huns Limestone Member, Urusis Formation, Nama Group, at two adjacent localities in southern Namibia contain thin foliose to arched, sheet-like carbonate crusts that are 100–500 µm thick and up to 5 cm in lateral dimension. Morphologic, petrographic, and geochemical evidence supports the interpretation of these delicate crusts as biogenic, most likely the remains of calcified encrusting metaphytes. The original sediments of the fossiliferous samples contained aragonitic encrusting algae, botryoidal aragonite cements, and an aragonite mud groundmass. Spherulites within the precursor mud could represent bacterially induced mineral growths or the concretions of marine rivularian cyanobacteria. Original textures were severely disrupted during the diagenetic transition of aragonite to low-magnesian calcite, but some primary structures remain discernible as ghosts in the neomorphic mosaic. Gross morphology, original aragonite mineralogy, and hypobasal calcification indicate that the crusts are similar to late Paleozoic phylloid algae and extant peyssonnelid red algae. Structures interpreted as possible conceptacles also suggest possible affinities with the Corallinaceae. Two species of Cloudina, interpreted as the remains of a shelly metazoan, are also known from limestones in the Nama Group. It is possible, therefore, that skeletalization in metaphytes and animals arose nearly simultaneously near the end of the Proterozoic Eon.

[1]  A. J. Kaufman,et al.  Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. , 1991, Precambrian research.

[2]  A. Woronow,et al.  Aragonite-calcite transformation based on Pennsylvanian molluscs: Discussion and reply , 1990 .

[3]  Z. Lasemi,et al.  New microtextural criterion for differentiation of compaction and early cementation in fine-grained limestones , 1990 .

[4]  K. Grey,et al.  Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia , 1990 .

[5]  G. Vermeij The origin of skeletons , 1989 .

[6]  W. J. Meyers,et al.  Cathodoluminescence in diagenetic calcites; the roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements , 1989 .

[7]  Zhang Yun Multicellular thallophytes with differentiated tissues from Late Proterozoic phosphate rocks of South China , 1989 .

[8]  U. Brand Aragonite-calcite transformation based on Pennsylvanian molluscs , 1989 .

[9]  W. Ward,et al.  Water chemistry and CaCO3 dissolution in the saline part of an open-flow mixing zone, coastal Yucatan Peninsula, Mexico , 1989 .

[10]  B. Whitton,et al.  Recent stromatolites in landlocked pools on Aldabra, Western Indian ocean , 1989 .

[11]  P. Smart,et al.  Carbonate dissolution in a modern mixing zone , 1988, Nature.

[12]  D. Budd Aragonite-to-calcite transformation during fresh-water diagenesis of carbonates: Insights from pore-water chemistry , 1988 .

[13]  A. Knoll,et al.  Exceptional preservation of fossils in an Upper Proterozoic shale , 1988, Nature.

[14]  J. Wray,et al.  Calcification of Encrusting Aragonitic Algae (Peyssonneliaceae): Implications for the Origin of Late Paleozoic Reefs and Cements , 1988 .

[15]  D. Bottjer,et al.  Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States , 1988 .

[16]  J. Beier Petrographic and geochemical analysis of caliche profiles in a Bahamian Pleistocene dune , 1987 .

[17]  R. Mason Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, U.K. , 1987 .

[18]  M. Wallace The role of internal erosion and sedimentation in the formation of stromatactis mudstones and associated lithologies , 1987 .

[19]  J. O. Morrison,et al.  PALEOSCENE #6.Biogeochemistry of Fossil Marine Invertebrates , 1987 .

[20]  J. Andrews Microfacies and geochemistry of Middle Jurassic algal limestones from Scotland , 1986 .

[21]  A. Knoll,et al.  Latest Proterozoic Microfossils from the Nama Group, Namibia (South West Africa) , 1986 .

[22]  S. Lewis The Role of Herbivorous Fishes in the Organization of a Caribbean Reef Community , 1986 .

[23]  R. Reid Discovery of Triassic phylloid algae: possible links with the Paleozoic , 1986 .

[24]  R. Steneck The Ecology of Coralline Algal Crusts: Convergent Patterns and Adaptative Strategies , 1986 .

[25]  J. Dravis,et al.  Enhanced Carbonate Petrography Using Fluorescence Microscopy , 1985 .

[26]  E. A. Wachter,et al.  Exchange of oxygen isotopes in carbon dioxide-phosporic acid systems , 1985 .

[27]  R. Jenkins The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms , 1985, Paleobiology.

[28]  L. P. Knauth,et al.  Preserved stable isotopic signature of subaerial diagenesis in the 1.2-b.y. Mescal Limestone, central Arizona: Implications for the timing and development of a terrestrial plant cover , 1985 .

[29]  J. Hayes,et al.  Isotopic analyses based on the mass spectrum of carbon dioxide. , 1985, Analytical chemistry.

[30]  H. Hofmann The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains, north-west Canada , 1985 .

[31]  R. Steneck Adaptations of Crustose Coralline Algae to Herbivory: Patterns in Space and Time , 1985 .

[32]  S. Morris,et al.  Healed injuries in Early Cambrian trilobites from South Australia , 1985 .

[33]  Z. Lasemi,et al.  Transformation of aragonite-dominated lime muds to microcrystalline limestones , 1984 .

[34]  R. Riding,et al.  Assemblages of calcareous algae near the Precambrian/Cambrian boundary in Siberia and Mongolia , 1984, Geological Magazine.

[35]  R. Bathurst Neomorphic spar versus cement in some Jurassic grainstones: significance for evaluation of porosity evolution and compaction , 1983, Journal of the Geological Society.

[36]  Z. Lasemi,et al.  Recognition of Original Mineralogy in Micrites: ABSTRACT , 1983 .

[37]  T. Anderson,et al.  Stable Isotopes of Oxygen and Carbon and their Application to Sedimentologic and Paleoenvironmental Problems , 1983 .

[38]  R. Steneck Escalating herbivory and resulting adaptive trends in calcareous algal crusts , 1983, Paleobiology.

[39]  R. Matthews,et al.  Isotope signatures associated with early meteoric diagenesis , 1982 .

[40]  T. Crimes,et al.  Trace fossils from the Nama Group (Precambrian-Cambrian) of Southwest Africa (Namibia) , 1982 .

[41]  R. J. Horodyski THE MIDDLE PROTEROZOIC APPEKUNNY ARGILLITE, BELT SUPERGROUP, NORTHWESTERN MONTANA , 1982 .

[42]  A. B. Carpenter,et al.  Cathodoluminescence and Composition of Calcite Cement in the Taum Sauk Limestone (Upper Cambrian), Southeast Missouri , 1982 .

[43]  R. J. Horodyski Impressions of algal mats from the Middle Proterozoic Belt Supergroup , 1982 .

[44]  R. Bathurst Genesis of stromatactis cavities between submarine crusts in Palaeozoic carbonate mud buildups , 1982, Journal of the Geological Society.

[45]  H. Hofmann,et al.  Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China , 1981 .

[46]  S. Golubić,et al.  Biogenically Formed Aragonite Concretions in Marine Rivularia , 1981 .

[47]  T. Cross,et al.  Primary Submarine Cements and Neomorphic Spar in a Stromatolitic-Bound Phylloid Algal Bioherm, Laborcita Formation (Wolfcampian), Sacramento Mountains, New Mexico, U.S.A. , 1981 .

[48]  J. Novitsky Calcium carbonate precipitation by marine bacteria , 1981 .

[49]  J. Veizer,et al.  Chemical Diagenesis of a Multicomponent Carbonate System--1: Trace Elements , 1980 .

[50]  M. Mcwilliams,et al.  Paleomagnetism of late Precambrian to early Paleozoic mixtite-bearing formations in Namibia (South West Africa); the Nama Group and Blaubeker Formation , 1980 .

[51]  R. Y. Morita Calcite precipitation by marine bacteria , 1980 .

[52]  N. James,et al.  The seaward margin of Belize barrier and atoll reefs : morphology, sedimentology, organism distribution, and late quaternary history , 1980 .

[53]  N. Clauer,et al.  Isotopic dating of low-grade metamorphic shales in northern Namibia (South West Africa) and implications for the orogenic evolution of the Pan-African Damara-Belt , 1979 .

[54]  H. Hofmann,et al.  Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada , 1979 .

[55]  A. Siedlecka Late Precambrian tidal-flat deposits and algal stromatolites in the Båtsfjord formation, East Finnmark, North Norway , 1978 .

[56]  P. Davies,et al.  The formation of ooids , 1978 .

[57]  J. Hubbard Calcareous algae. Developments in palaeontology and stratigraphy 4: John L. Wray. Elsevier, Amsterdam, 1977, 185 pp., $28.75 , 1978 .

[58]  H. D. Holland The chemistry of the atmosphere and oceans , 1978 .

[59]  P. Davies,et al.  Synthesis and possible mechanism of formation of radial carbonate ooids , 1978 .

[60]  W. J. Meyers,et al.  Microdolomite inclusions in cloudy prismatic calcites; a proposed criterion for former high-magnesium calcites , 1977 .

[61]  N. Pingitore Vadose and Phreatic Diagenesis: Processes, Products and their Recognition in Corals , 1976 .

[62]  D. Oehler,et al.  MEGASCOPIC ALGAE 1300 MILLION YEARS OLD FROM THE BELT SUPERGROUP, MONTANA: A REINTERPRETATION OF WALCOTT'S HELMINTHOIDICHNITES , 1976 .

[63]  M. Glaessner Early Phanerozoic annelid worms and their geological and biological significance , 1976, Journal of the Geological Society.

[64]  C. Monty Chapter 5.1 The Origin and Development of Cryptalgal Fabrics , 1976 .

[65]  P. Scholle,et al.  Aragonitic and high-Mg calcite caliche from the Persian Gulf-a modern analog for the Permian of Texas and New Mexico , 1974 .

[66]  G. Germs A reinterpretation of Rangea schneiderhoehni and the discovery of a related new fossil from the Nama Group, South West Africa , 1973 .

[67]  N. James Holocene and Pleistocene Calcareous Crust (Caliche) Profiles: Criteria for Subaerial Exposure , 1972 .

[68]  G. Germs New shelly fossils from Nama Group, South West Africa , 1972 .

[69]  J. Schroeder Fabrics and sequences of submarine carbonate cements in Holocene Bermuda cup reefs , 1972 .

[70]  H. Pflug Systematik der jung-präkambrischen PetalonamaePflug 1970 , 1972 .

[71]  R. Matthews,et al.  Distribution of High-Magnesium Calcite in Lime Muds of the Great Bahama Bank: Diagenetic Implications , 1972 .

[72]  G. Bernard The stratigraphy and paleontology of the lower Nama group, South West Africa , 1972 .

[73]  S M Awramik,et al.  Precambrian Columnar Stromatolite Diversity: Reflection of Metazoan Appearance , 1971, Science.

[74]  G. Friedman Early Diagenesis and Lithification in Carbonate Sediments , 1964 .

[75]  J. Wray,et al.  Porous Algal Facies (Pennsylvanian) Honaker Trail, San Juan Canyon, Utah , 1963 .

[76]  J. D. Hudson Pseudo-pleochroic Calcite in Recrystallized Shell-Limestones , 1962, Geological Magazine.

[77]  J. Wray,et al.  Eugonophyllum, a new Pennsylvanian and Permian algal genus , 1961 .

[78]  C. Oppenheimer Note on the formation of spherical aragonitic bodies in the presence of bacteria from the Bahama Bank , 1961 .

[79]  P. Monaghan,et al.  The origin of calcareous ooliths , 1956 .

[80]  J. H. Johnson ARCHAEOLITHOPHYLLUM, A NEW GENUS OF PALEOZOIC CORALLINE ALGAE , 1956 .

[81]  A. Wood Organs of reproduction in the solenoporaceae , 1944 .

[82]  G. Gürich Die Kuibis-Fossilien der Nama-Formation von Südwestafrika , 1933 .

[83]  G. Drew On the Precipitation of Calcium Carbonate in the Sea by Marine Bacteria, and on the Action of Denitrifying Bacteria in Tropical and Temperate Seas , 1913, Journal of the Marine Biological Association of the United Kingdom.