Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs?

[1]  J. Gershenzon Metabolic costs of terpenoid accumulation in higher plants , 1994, Journal of Chemical Ecology.

[2]  M. Bowers,et al.  Iridoid glycosides as oviposition stimulants for the buckeye butterfly,Junonia coenia (Nymphalidae) , 1988, Journal of Chemical Ecology.

[3]  J. Links,et al.  The chemical nature of the antibacterial substance present inAucuba japonica thunbg , 1956, Experientia.

[4]  M. Bowers,et al.  Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm , 2005, Journal of Chemical Ecology.

[5]  G. Puttick,et al.  Response of generalist and specialist insects to qualitative allelochemical variation , 2005, Journal of Chemical Ecology.

[6]  K. Konno,et al.  Glycine Protects Against Strong Protein-Denaturing Activity of Oleuropein, a Phenolic Compound in Privet Leaves , 1998, Journal of Chemical Ecology.

[7]  N. Stamp,et al.  Fate of Host-Plant Iridoid Glycosides in Lepidopteran Larvae of Nymphalidae and Arcthdae , 1997, Journal of Chemical Ecology.

[8]  N. Stamp,et al.  Chemical variation within and between individuals ofPlantago lanceolata (Plantaginaceae) , 1992, Journal of Chemical Ecology.

[9]  P. Barbosa,et al.  Generalized plant defense: effects on multiple species , 1991, Oecologia.

[10]  J. Damme,et al.  Variation in host susceptibility among and within populations ofPlantago lanceolata L. infected by the fungusPhomopsis subordinaria (Desm.) Trav. , 1988, Oecologia.

[11]  M. Rausher,et al.  Relationship of phenotypic and genetic variation in Plantago lanceolata to disease caused by Fusarium moniliforme var. subglutinans , 1984, Oecologia.

[12]  L. S. Adler,et al.  Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae) , 2004, Oecologia.

[13]  A. Biere,et al.  FITNESS COSTS OF CHEMICAL DEFENSE IN PLANTAGO LANCEOLATA L.: EFFECTS OF NUTRIENT AND COMPETITION STRESS , 2003, Evolution; international journal of organic evolution.

[14]  D. Roach,et al.  Pathogen frequency in an age-structured population of Plantago lanceolata , 2003, Oecologia.

[15]  I. Baldwin,et al.  ECOLOGICAL COSTS AND BENEFITS CORRELATED WITH TRYPSIN PROTEASE INHIBITOR PRODUCTION IN NICOTIANA ATTENUATA , 2003 .

[16]  A. Biere,et al.  Two herbivore-deterrent iridoid glycosides reduce the in-vitro growth of a specialist but not of a generalist pathogenic fungus of Plantago lanceolata L , 2002, CHEMOECOLOGY.

[17]  J. Gershenzon,et al.  Constitutive plant toxins and their role in defense against herbivores and pathogens. , 2002, Current opinion in plant biology.

[18]  Rebecca E. Irwin,et al.  Direct and ecological costs of resistance to herbivory , 2002 .

[19]  A. Agrawal,et al.  An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores , 2002 .

[20]  Richard Karban,et al.  Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites , 2002, Oecologia.

[21]  T. Mitchell-Olds,et al.  COST OF DEFENSE IN THE CONTEXT OF PLANT COMPETITION: BRASSICA RAPA MAY GROW AND DEFEND , 2002 .

[22]  J. Daniel Hare Multitrophic Level Interactions: Plant genetic variation in tritrophic interactions , 2002 .

[23]  M. Reichelt,et al.  The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to Nitriles and Influences Trichoplusia ni Herbivory Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010261. , 2001, The Plant Cell Online.

[24]  S. M. Greenberg,et al.  Feeding and Life History of Spodoptera exigua (Lepidoptera: Noctuidae) on Different Host Plants , 2001 .

[25]  A. Biere,et al.  Direct and correlated responses to selection on iridoid glycosides in Plantago lanceolata L. , 2000 .

[26]  C. Olsen,et al.  Chemotaxonomy of Plantago. Iridoid glucosides and caffeoyl phenylethanoid glycosides. , 2000, Phytochemistry.

[27]  Vickerman,et al.  Feeding preferences of spodoptera exigua in response to form and concentration of selenium , 1999, Archives of insect biochemistry and physiology.

[28]  K. Konno,et al.  Enzymatic activation of oleuropein: a protein crosslinker used as a chemical defense in the privet tree. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K. A. Stowe Realized Defense of Artificially Selected Lines of Brassica rapa: Effects of Quantitative Genetic Variation in Foliar Glucosinolate Concentration , 1998 .

[30]  Richard Karban,et al.  Induced Responses to Herbivory , 1997 .

[31]  M. Bowers,et al.  Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae) , 1997 .

[32]  J. Zadoks,et al.  Transmission and overseasoning of Diaporthe adunca on Plantago lanceolata , 1996 .

[33]  J. Schultz,et al.  Multiple Defenses and Signals in Plant Defense against Pathogens and Herbivores , 1996 .

[34]  R. Croteau,et al.  Terpenoid metabolism. , 1995, The Plant cell.

[35]  Mark D. Rausher,et al.  Interactions between Herbivorous Insects and Plant-Insect Coevolution , 1994, The American Naturalist.

[36]  N. Stamp,et al.  EFFECTS OF PLANT AGE, GENOTYPE, AND HERBIVORY ON PLANTAGO PERFORMANCE AND CHEMISTRY' , 1993 .

[37]  N. Handjieva,et al.  Iridoid Glueosides from Plantago altissima L., Plantago lanceolata L., Plantago atrata Hoppe and Plantago argentea Chaix. , 1991 .

[38]  N. Handjieva,et al.  Iridoid Glueosides from Plantago altissima L., Plantago lanceolata L., Plantago atrata Hoppe and Plantago argentea Chaix. , 1991 .

[39]  S. Jensen Plant iridoids, their biosynthesis and distribution in angiosperms , 1991 .

[40]  P. Barbosa,et al.  Microbial mediation of plant-herbivore interactions , 1991 .

[41]  G. Puttick,et al.  Iridoid glycosides and insect feeding preferences: gypsy moths (Lymantria dispar, Lymantriidae) and buckeyes (Junonia coenia, Nymphalidae) , 1989 .

[42]  F. Stermitz Iridoid Glycosides and Aglycones as Chiral Synthons, Bioactive Compounds, and Lepidopteran Defenses , 1989 .

[43]  M. P. de Nooij,et al.  VARIATION IN PATHOGENICITY AMONG AND WITHIN POPULATIONS OF THE FUNGUS PHOMOPSIS SUBORDINARIA INFECTING PLANTAGO LANCEOLATA. , 1988, Evolution; international journal of organic evolution.

[44]  M. P. Nooij,et al.  Phomopsis subordinaria and associated stalk disease in natural-populations of Plantago lanceolata , 1987 .

[45]  Rodney Croteau,et al.  Biosynthesis and catabolism of monoterpenoids , 1987 .

[46]  V. J. G. Houba,et al.  A novel digestion technique for multi-element plant analyses , 1983 .

[47]  R. Labadie,et al.  Thin-layer chromatographic bioassay of iridoid and secoiridoid glucosides with a fungitoxic aglucone moiety using beta-glucosidase and the fungus Penicillium expansum as a test organism. , 1983, Journal of chromatography.

[48]  M. Yamaki,et al.  [Studies on the iridoid related compounds. I. On the antimicrobial activity of aucubigenin and certain iridoid aglycones]. , 1982, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.

[49]  F. Schönbeck,et al.  Preformed Substances as Potential Protectants , 1976 .

[50]  G. Waldbauer The Consumption and Utilization of Food by Insects , 1968 .

[51]  A. R. Forrester,et al.  CATALPOL AND METHYLCATALPOL: NATURALLY OCCURRING GLYCOSIDES IN PLANTAGO AND BUDDLEIA SPECIES. , 1965, The Biochemical journal.

[52]  J. Doe Sand and Water Culture Methods Used in the Study of Plant Nutrition , 1953, Soil Science Society of America Journal.