Robust solutions using fuzzy chance constraints

It is well known that optimization problems for the decision-making process in real environments should consider uncertainty to attain robust solutions. Although this uncertainty has been usually modelled using probability theory, assuming a random origin, possibility theory has emerged as an alternative uncertainty model when statistical information is not available, or when imprecision and vagueness have to be considered. This article proposes two different criteria to obtain robust solutions for linear optimization problems when the objective function coefficients are modelled with possibility distributions. To do so, chance constrained programming is used, leading to equivalent crisp optimization problems, which can be solved by commercial optimization software. A simple case example is presented to illustrate the use of the proposed methodology.

[1]  J. Barquin,et al.  Application of possibility theory to robust Cournot equilibrium in electricity market , 2005, 2004 International Conference on Probabilistic Methods Applied to Power Systems.

[2]  Chih-Hsun Hsieh,et al.  Optimization of fuzzy production inventory models , 2002, Inf. Sci..

[3]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[4]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[5]  Weldon A. Lodwick,et al.  Fuzzy linear programming using a penalty method , 2001, Fuzzy Sets Syst..

[6]  Jianming Shi,et al.  A Combined Algorithm for Fractional Programming , 2001, Ann. Oper. Res..

[7]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[8]  Masahiro Inuiguchi,et al.  Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem , 2000, Fuzzy Sets Syst..

[9]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[10]  D. Dubois,et al.  Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions , 1999 .

[11]  Pascal Van Hentenryck The OPL optimization programming language , 1999 .

[12]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[13]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[14]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[15]  前田 博,et al.  Didier Dubois and Henri Prade Fuzzy sets in approximate reasoning, Part 1 : Inference with possibility distributions Fuzzy Sets and Systems, vol.40,pp143-202,1991 , 1995 .

[16]  H. Zimmermann,et al.  Fuzzy reasoning for solving fuzzy mathematical programming problems , 1993 .

[17]  Ching-Lai Hwang,et al.  ISGP-II for multiobjective optimization with imprecise objective coefficients , 1993, Comput. Oper. Res..

[18]  Henri Prade,et al.  Fuzzy sets and probability: misunderstandings, bridges and gaps , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[19]  R. Tiwari,et al.  Multiple objective linear fractional programming: a fuzzy set theoretic approach , 1992 .

[20]  C. Hwang,et al.  A new approach to some possibilistic linear programming problems , 1992 .

[21]  B. Rustem,et al.  Robust capacity planning under uncertainty , 1991 .

[22]  J. Buckley Solving possibilistic linear programming , 1989 .

[23]  D. Dubois,et al.  Fuzzy sets, probability and measurement , 1989 .

[24]  J. Buckley Possibility and necessity in optimization , 1988 .

[25]  M. K. Luhandjula Linear programming with a possibilistic objective function , 1987 .

[26]  R. Yager A characterization of the extension principle , 1986 .

[27]  Masatoshi Sakawa,et al.  Interactive decision making for multiobjective nonlinear programming problems with fuzzy parameters , 1986 .

[28]  Eduardo Segarra,et al.  A Stochastic Programming Analysis of the Farm Level Implications of Soil Erosion Control , 1985, Journal of Agricultural and Applied Economics.

[29]  Henri Prade,et al.  A Computational Approach to Approximate and Plausible Reasoning with Applications to Expert Systems , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  K. Asai,et al.  Fuzzy linear programming problems with fuzzy numbers , 1984 .

[31]  A. R. G. Heesterman,et al.  Matrices and Simplex Algorithms , 1982, Springer Netherlands.

[32]  G. Bitran Linear Multiple Objective Problems with Interval Coefficients , 1980 .

[33]  Hideo Tanaka,et al.  On Fuzzy-Mathematical Programming , 1973 .

[34]  A. Charnes,et al.  Programming with linear fractional functionals , 1962 .

[35]  Masahiro Inuiguchi,et al.  Multiple Objective Linear Programming with Fuzzy Coefficients , 2005 .

[36]  D. Kendrick,et al.  GAMS -- A User's Guide , 2004 .

[37]  Shan-Huo Chen,et al.  Optimization of fuzzy simple inventory models , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[38]  Baoding Liu,et al.  Uncertain Programming , 1999 .

[39]  János Mayer,et al.  Stochastic Linear Programming Algorithms: A Comparison Based on a Model Management System , 1998 .

[40]  J. Collado Aplicación de la teoría de conjuntos borrosos al diagnóstico de procesos industriales , 1997 .

[41]  Philippe Smets,et al.  Imperfect Information: Imprecision and Uncertainty , 1996, Uncertainty Management in Information Systems.

[42]  David J. Pannell,et al.  GULF: A general, user-friendly linear and linear-fractional programming package , 1993 .

[43]  Hidetomo Ichihashi,et al.  Modality constrained programming problems: A unified approach to fuzzy mathematical programming problems in the setting of possibility theory , 1993, Inf. Sci..

[44]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[45]  D. Dubois,et al.  Fuzzy sets in approximate reasoning. I, Inference with possibility distributions , 1991 .

[46]  Hidetomo Ichihashi,et al.  Fuzzy Programming: A Survey of Recent Developments , 1990 .

[47]  Masatoshi Sakawa,et al.  Interactive Decision Making for Multiobjective Programming Problems with Fuzzy Parameters , 1990 .

[48]  H. Rommelfanger,et al.  Linear programming with fuzzy objectives , 1989 .

[49]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[50]  M. K. Luhandjula On possibilistic linear programming , 1986 .

[51]  M. K. Luhandjula Linear programming under randomness and fuzziness , 1983 .

[52]  Hans-Jürgen Zimmermann,et al.  Fuzzy mathematical programming , 1983, Comput. Oper. Res..

[53]  W. Ziemba,et al.  Generalized concavity in optimization and economics , 1981 .

[54]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[55]  W. H. Wischmeier,et al.  Predicting rainfall erosion losses : a guide to conservation planning , 1978 .

[56]  Nicholas Rescher,et al.  A theory of possibility , 1975 .

[57]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[58]  McGraw-Hill, New York. , 2022 .