The PEP survey: clustering of infrared-selected galaxies and structure formation at z ∼ 2 in GOODS-South

This paper presents the first direct estimate of the 3D clustering properties of far-infrared sources up to z∼ 3. This has been possible thanks to the PACS Evolutionary Probe (PEP) survey of the GOODS-South field performed with the PACS instrument on board the Herschel satellite. 550 and 502 sources were detected respectively in the 100- and 160-μm channels down to fluxes  mJy and  mJy, cuts that ensure >80 per cent completeness of the two catalogues. More than 65 per cent of these sources have an (either photometric or spectroscopic) redshift determination from the MUSIC catalogue; this percentage rises to ∼95 per cent in the inner portion of GOODS-South which is covered by data at other wavelengths. An analysis of the deprojected two-point correlation function w(θ) over the whole redshift range spanned by the data reports for the (comoving) correlation length, r0∼ 6.3 and ∼6.7 Mpc, respectively at 100 and 160 μm, corresponding to dark matter halo masses M≳ 1012.4 M⊙, in an excellent agreement with previous estimates obtained for mid-IR selected sources in the same field. Objects at z∼ 2 instead seem to be more strongly clustered, with r0∼ 19 and ∼17 Mpc in the two considered PACS channels. This dramatic increase of the correlation length between z∼ 1 and ∼2 is connected with the presence, more visible at 100 μm than in the other band, of a wide (at least 4 Mpc across in projection), M≳ 1014 M⊙, filamentary structure which includes more than 50 per cent of the sources detected at z∼ 2. An investigation of the properties of such sources indicates the possibility of a boosted star-forming activity in those which reside within the overdense environment with respect to more isolated galaxies found in the same redshift range. If confirmed by larger data sets, this result can be explained as due to the combined effect of large reservoirs of gas available at high redshifts in deep potential wells such as those associated with large overdensities and the enhanced rate of encounters between sources favoured by their relative proximity. Lastly, we also present our results on the evolution of the relationship between luminous and dark matter in star-forming galaxies between z∼ 1 and ∼2. We find that the increase in (average) stellar mass in galaxies 〈M*〉 between z∼ 1 and ∼2 is about a factor of 10 lower than that of the dark matter haloes hosting such objects (〈M*〉z∼ 1/〈M*〉z∼ 2∼ 4 × 10−1 versus Mz∼ 1halo/Mhaloz∼ 2∼ 4 × 10−2). When compared with recent results taken from the literature, our findings agree with the evolutionary picture of downsizing whereby massive galaxies at z∼ 2 were more actively forming stars than their z∼ 1 counterparts, while at the same time they contained a lower fraction of their mass in the form of luminous matter.

[1]  B. Lundgren,et al.  GALAXY CLUSTERING IN THE NEWFIRM MEDIUM BAND SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS AND DARK MATTER HALO MASS AT 1 < z < 2 , 2010, 1012.1317.

[2]  H. Rottgering,et al.  Galaxy protocluster candidates around z∼ 2.4 radio galaxies , 2010, 1008.4588.

[3]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[4]  D. Elbaz,et al.  HerMES: Halo occupation number and bias properties of dusty galaxies from angular clustering measurements , 2010, 1005.3303.

[5]  S. Maddox,et al.  Herschel-ATLAS: The angular correlation function of submillimetre galaxies at high and low redshift , 2010, 1005.2406.

[6]  A. Cimatti,et al.  PEP: First Herschel probe of dusty galaxy evolution up to z ~ 3 , 2010, 1005.1473.

[7]  S. Maddox,et al.  The evolution of galaxy clustering since z= 3 using the UKIDSS Ultra Deep Survey: the divergence of passive and star-forming galaxies , 2010, 1005.1180.

[8]  A. Cimatti,et al.  The first Herschel view of the mass-SFR link in high-z galaxies , 2010, 1005.1089.

[9]  A. Cimatti,et al.  Dissecting the cosmic infra-red background with Herschel/PEP , 2010, 1005.1073.

[10]  Taiwan,et al.  Clustering properties of galaxies selected in stellar mass: breaking down the link between luminous and dark matter in massive galaxies from z= 0 to z= 2 , 2010, 1003.2755.

[11]  M. Magliocchetti,et al.  MAMBO observations at 240 GHz of optically obscured Spitzer sources: source clumps and radio activity at high redshift , 2009, 0909.3461.

[12]  H. Rix,et al.  THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2009, 0910.2821.

[13]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[14]  A. Fontana,et al.  A comprehensive study of large-scale structures in the GOODS-SOUTH field up to z ∼ 2.5 , 2009, 0903.3952.

[15]  J. Frieman,et al.  THE CORRELATION FUNCTION OF OPTICALLY SELECTED GALAXY CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY , 2008, 0801.3485.

[16]  A. Connolly,et al.  CLUSTERING OF LOW-REDSHIFT (z ⩽ 2.2) QUASARS FROM THE SLOAN DIGITAL SKY SURVEY , 2008, 0903.3230.

[17]  Clustering of Dust-Obscured Galaxies at z ~ 2 , 2008, 0810.0528.

[18]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[19]  Heidelberg,et al.  Star formation and mass assembly in high-redshift galaxies , 2009, 0905.0683.

[20]  J. Dunlop,et al.  On the evolution of clustering of 24-μm-selected galaxies , 2007, 0710.3136.

[21]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[22]  M. Magliocchetti,et al.  The interplay between radio galaxies and cluster environment , 2007 .

[23]  A. Cimatti,et al.  Unveiling the oldest and most massive galaxies at very high redshift , 2007, astro-ph/0703276.

[24]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[25]  R. Rebolo,et al.  A low mass cluster of extremely red galaxies at z= 1.10 in the GOODS Southern Field , 2007, astro-ph/0702523.

[26]  A. Szalay,et al.  Clustering of High-Redshift (z ≥ 2.9) Quasars from the Sloan Digital Sky Survey , 2007, astro-ph/0702214.

[27]  On the prevalence of radio‐loud active galactic nuclei in brightest cluster galaxies: implications for AGN heating of cooling flows , 2006, astro-ph/0611197.

[28]  M. Magliocchetti,et al.  A highly obscured and strongly clustered galaxy population discovered with the Spitzer Space Telescope , 2006, astro-ph/0611409.

[29]  J. Dunlop,et al.  Massive Galaxies at Redshifts 5, 2006 .

[30]  D. Elbaz,et al.  The star formation history of luminous infrared galaxies , 2006, astro-ph/0605642.

[31]  A. Cimatti,et al.  Mass downsizing and ``top-down'' assembly of early-type galaxies , 2006, astro-ph/0605353.

[32]  I. Waddington,et al.  The Spatial Clustering of Ultraluminous Infrared Galaxies over 1.5 < z < 3 , 2006, astro-ph/0603061.

[33]  A. Fontana,et al.  The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field , , 2006, astro-ph/0603094.

[34]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[35]  A. Fontana,et al.  Probing the evolution of the near-infrared luminosity function of galaxies to z≃ 3 in the Hubble Deep Field-South , 2005, astro-ph/0512147.

[36]  B. Garilli,et al.  The Vimos VLT Deep Survey: Compact structures in the CDFS , 2005, astro-ph/0507690.

[37]  C. Steidel,et al.  Spectroscopic Identification of a Protocluster at z = 2.300: Environmental Dependence of Galaxy Properties at High Redshift , 2005, astro-ph/0502432.

[38]  T. Treu,et al.  Keck Spectroscopy of Distant GOODS Spheroidal Galaxies: Downsizing in a Hierarchical Universe , 2005, astro-ph/0502028.

[39]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[40]  The VIMOS VLT deep survey - The evolution of galaxy clustering to z 2 from first epoch observations , 2004, astro-ph/0409135.

[41]  The First Measurements of Galaxy Clustering from Infrared Array Camera (IRAC) Data of the Spitzer First Look Survey , 2004, astro-ph/0406589.

[42]  M. Magliocchetti,et al.  Cosmic evolution of quasar clustering: implications for the host haloes , 2004, astro-ph/0406036.

[43]  A. Cimatti,et al.  The K20 survey. VI. The distribution of the stellar masses in galaxies up to z 2 , 2004, astro-ph/0405055.

[44]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[45]  O. Lahav,et al.  The 2dF galaxy redshift survey: clustering properties of radio galaxies , 2003, astro-ph/0312160.

[46]  A. Cimatti,et al.  Near-Infrared Bright Galaxies at z ≃ 2. Entering the Spheroid Formation Epoch? , 2003, astro-ph/0308456.

[47]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[48]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type , 2003, astro-ph/0303668.

[49]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2002, astro-ph/0205085.

[50]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[51]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[52]  Massimo Stiavelli,et al.  WFPC2 Observations of the Hubble Deep Field South , 2000, astro-ph/0010245.

[53]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[54]  S. Maddox,et al.  The redshift evolution of clustering in the Hubble Deep Field , 1999 .

[55]  O. Fèvre,et al.  Clustering at High Redshift , 1999, astro-ph/9905314.

[56]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[57]  P. Harding,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XIII. The Metallicity Dependence of the Cepheid Distance Scale , 1997, astro-ph/9712055.

[58]  ROBERT E. Williams,et al.  The Hubble Deep Field: Observations, Data Reduction, and , 1996, astro-ph/9607174.

[59]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[60]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[61]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[62]  D. Schramm,et al.  Concordance of X-Ray Cluster Data with Big Bang Nucleosynthesis in Mixed Dark Matter Models , 1995, astro-ph/9511111.

[63]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[64]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[65]  Will Saunders,et al.  On the likelihood ratio for source identification. , 1992 .

[66]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[67]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[68]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[69]  E. Salpeter The Luminosity function and stellar evolution , 1955 .