High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors.

A key element in stretchable actuators, sensors, and systems based on elastomer materials are compliant electrodes. While there exist many methodologies for fabricating electrodes on dielectric elastomers, very few succeed in achieving high-resolution patterning over large areas. We present a novel approach for the production of mechanically robust, high-resolution compliant electrodes for stretchable silicone elastomer actuators and sensors. Cast, 2-50 μm thick poly(dimethylsiloxane) (PDMS)-carbon composite layers are patterned by laser ablation and subsequently bonded to a PDMS membrane by oxygen plasma activation. The technique affords great design flexibility and high resolution and readily scales to large-area arrays of devices. We validate our methodology by producing arrays of actuators and sensors on up to A4-size substrates, reporting on microscale dielectric elastomer actuators (DEA) generating area strains of over 25%, and interdigitated capacitive touch sensors with high sensitivity yet insensitivity to substrate stretching. We demonstrate the ability to cofabricate highly integrated multifunctional transducers using the same process flow, showing the methodology's promise in realizing sophisticated and reliable complex stretchable devices with fine features over large areas.

[1]  D. Beebe,et al.  Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer , 2000, Journal of Microelectromechanical Systems.

[2]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[3]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[4]  Michael J. Owen,et al.  Hydrophobic Recovery of Polydimethylsiloxane Elastomer Exposed to Partial Electrical Discharge , 2000 .

[5]  Peter Sommer-Larsen,et al.  Mechanical properties of dielectric elastomer actuators with smart metallic compliant electrodes , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  George M. Whitesides,et al.  Customization of Poly(dimethylsiloxane) Stamps by Micromachining Using a Femtosecond‐Pulsed Laser , 2003 .

[7]  J. Berg,et al.  Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength , 2005, Journal of Microelectromechanical Systems.

[8]  Andreas Stemmer,et al.  Low voltage, highly tunable diffraction grating based on dielectric elastomer actuators , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  W. Yuan,et al.  Fault‐Tolerant Dielectric Elastomer Actuators using Single‐Walled Carbon Nanotube Electrodes , 2008 .

[10]  D. Cotton,et al.  A Multifunctional Capacitive Sensor for Stretchable Electronic Skins , 2009, IEEE Sensors Journal.

[11]  S. Michel,et al.  A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators , 2009 .

[12]  P. Dubois,et al.  Metal Ion Implantation for the Fabrication of Stretchable Electrodes on Elastomers , 2009 .

[13]  G. Whitesides,et al.  Stretchable Microfluidic Radiofrequency Antennas , 2010, Advanced materials.

[14]  P Lotz,et al.  Fabrication and Application of Miniaturized Dielectric Elastomer Stack Actuators , 2011, IEEE/ASME Transactions on Mechatronics.

[15]  Paolo Milani,et al.  Highly Deformable Nanostructured Elastomeric Electrodes With Improving Conductivity Upon Cyclical Stretching , 2011, Advanced materials.

[16]  Herbert Shea,et al.  Electrical conductivity and Young"s modulus of flexible nanocomposites made by metal ion implantation of Polydimethylsiloxane: the relationship between nanostructure and macroscopic properties , 2011 .

[17]  Silvain Michel,et al.  Self-healing electrodes for dielectric elastomer actuators , 2012 .

[18]  Zhibin Yu,et al.  Compliant Silver Nanowire‐Polymer Composite Electrodes for Bistable Large Strain Actuation , 2012, Advanced materials.

[19]  C. Keplinger,et al.  Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation , 2012 .

[20]  Herbert Shea,et al.  An array of 100 μm × 100 μm dielectric elastomer actuators with 80% strain for tissue engineering applications , 2012 .

[21]  Francisco Molina-Lopez,et al.  All additive inkjet printed humidity sensors on plastic substrate , 2012 .

[22]  Z. Suo,et al.  Large, Uni-directional Actuation in Dielectric Elastomers Achieved By Fiber Stiffening , 2012 .

[23]  H. Shea,et al.  Zipping dielectric elastomer actuators: characterization, design and modeling , 2013 .

[24]  Qibing Pei,et al.  Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane , 2013 .

[25]  H. Shea,et al.  Improved electromechanical behavior in castable dielectric elastomer actuators , 2013 .

[26]  C. V. van Blitterswijk,et al.  Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans , 2013, PloS one.

[27]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[28]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[29]  Stéphanie P. Lacour,et al.  Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization , 2013 .

[30]  Carmel Majidi,et al.  Liquid-phase gallium-indium alloy electronics with microcontact printing. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[31]  Todd A. Gisby,et al.  Self sensing feedback for dielectric elastomer actuators , 2013 .

[32]  J. Perruisseau-Carrier,et al.  A tunable millimeter-wave phase shifter driven by dielectric elastomer actuators , 2014, Smart Structures.

[33]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[34]  Minwoo Park,et al.  Design of conductive composite elastomers for stretchable electronics , 2014 .

[35]  Zhigang Suo,et al.  Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. , 2014, ACS applied materials & interfaces.

[36]  F. Carpi,et al.  Ultrafast all-polymer electrically tuneable silicone lenses , 2016 .

[37]  Dario Floreano,et al.  A Foldable Antagonistic Actuator , 2015, IEEE/ASME Transactions on Mechatronics.

[38]  S. Yao,et al.  Nanomaterial‐Enabled Stretchable Conductors: Strategies, Materials and Devices , 2015, Advanced materials.

[39]  I. Gavrilovich,et al.  Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper , 2015, IEEE/ASME Transactions on Mechatronics.

[40]  Samuel Rosset,et al.  Maximizing the displacement of compact planar dielectric elastomer actuators , 2015 .