Sample Complexity Bounds for Dictionary Learning from Vector- and Tensor-Valued Data

[1]  Anand D. Sarwate,et al.  Identifiability of Kronecker-Structured Dictionaries for Tensor Data , 2017, IEEE Journal of Selected Topics in Signal Processing.

[2]  Anand D. Sarwate,et al.  Minimax Lower Bounds on Dictionary Learning for Tensor Data , 2016, IEEE Transactions on Information Theory.

[3]  Anand D. Sarwate,et al.  Identification of kronecker-structured dictionaries: An asymptotic analysis , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[4]  Anand D. Sarwate,et al.  STARK: Structured dictionary learning through rank-one tensor recovery , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[5]  Cássio Fraga Dantas,et al.  Learning Dictionaries as a Sum of Kronecker Products , 2017, IEEE Signal Processing Letters.

[6]  Xuanqin Mou,et al.  Tensor-Based Dictionary Learning for Spectral CT Reconstruction , 2017, IEEE Transactions on Medical Imaging.

[7]  Kasso A. Okoudjou,et al.  Finite Frame Theory: A Complete Introduction to Overcompleteness , 2016 .

[8]  Anand D. Sarwate,et al.  Minimax lower bounds for Kronecker-structured dictionary learning , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[9]  Yonina C. Eldar,et al.  On the Minimax Risk of Dictionary Learning , 2015, IEEE Transactions on Information Theory.

[10]  Waheed Uz Zaman Bajwa,et al.  Cloud K-SVD: A Collaborative Dictionary Learning Algorithm for Big, Distributed Data , 2014, IEEE Transactions on Signal Processing.

[11]  Misha Elena Kilmer,et al.  A tensor-based dictionary learning approach to tomographic image reconstruction , 2015, BIT Numerical Mathematics.

[12]  Rémi Gribonval,et al.  Sparse and Spurious: Dictionary Learning With Noise and Outliers , 2014, IEEE Transactions on Information Theory.

[13]  Karin Schnass,et al.  Local identification of overcomplete dictionaries , 2014, J. Mach. Learn. Res..

[14]  Waheed Uz Zaman Bajwa,et al.  Dictionary learning based nonlinear classifier training from distributed data , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[15]  Prateek Jain,et al.  Learning Sparsely Used Overcomplete Dictionaries , 2014, COLT.

[16]  Florian Roemer,et al.  Tensor-based algorithms for learning multidimensional separable dictionaries , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[17]  Sanjeev Arora,et al.  New Algorithms for Learning Incoherent and Overcomplete Dictionaries , 2013, COLT.

[18]  Andrzej Cichocki,et al.  Multidimensional compressed sensing and their applications , 2013, WIREs Data Mining Knowl. Discov..

[19]  Syed Zubair,et al.  Tensor dictionary learning with sparse TUCKER decomposition , 2013, 2013 18th International Conference on Digital Signal Processing (DSP).

[20]  Martin Kleinsteuber,et al.  Separable Dictionary Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Karin Schnass,et al.  On the Identifiability of Overcomplete Dictionaries via the Minimisation Principle Underlying K-SVD , 2013, ArXiv.

[22]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Waheed U. Bajwa,et al.  Finite Frames for Sparse Signal Processing , 2013 .

[24]  Andrzej Cichocki,et al.  Computing Sparse Representations of Multidimensional Signals Using Kronecker Bases , 2013, Neural Computation.

[25]  Huan Wang,et al.  Exact Recovery of Sparsely-Used Dictionaries , 2012, COLT.

[26]  Richard G. Baraniuk,et al.  Kronecker Compressive Sensing , 2012, IEEE Transactions on Image Processing.

[27]  Jean Ponce,et al.  Task-Driven Dictionary Learning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[29]  Dustin G. Mixon,et al.  Two are better than one: Fundamental parameters of frame coherence , 2011, 1103.0435.

[30]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[31]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[32]  Karin Schnass,et al.  Dictionary Identification—Sparse Matrix-Factorization via $\ell_1$ -Minimization , 2009, IEEE Transactions on Information Theory.

[33]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[34]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[35]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[36]  Shift-Invariance Sparse Coding for Audio Classification , 2007, UAI.

[37]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[38]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[39]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[40]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[41]  A. Bruckstein,et al.  On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them , 2006 .

[42]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[43]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  E. Oja,et al.  Independent Component Analysis , 2001 .

[45]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[46]  C. Loan The ubiquitous Kronecker product , 2000 .

[47]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[48]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[49]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[50]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[51]  Bin Yu Assouad, Fano, and Le Cam , 1997 .

[52]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[53]  Vladimir Vapnik,et al.  Principles of Risk Minimization for Learning Theory , 1991, NIPS.

[54]  I. Jolliffe Principal Component Analysis and Factor Analysis , 1986 .

[55]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[56]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[57]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .