User-guided program reasoning using Bayesian inference
暂无分享,去创建一个
Mukund Raghothaman | Mayur Naik | Kihong Heo | Sulekha Kulkarni | M. Naik | S. Kulkarni | K. Heo | Mukund Raghothaman
[1] Christopher Ré,et al. Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS , 2011, Proc. VLDB Endow..
[2] Thomas W. Reps,et al. Demand Interprocedural Program Analysis Using Logic Databases , 1993, Workshop on Programming with Logic Databases , ILPS.
[3] Brendan J. Frey,et al. Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.
[4] Judea Pearl,et al. Chapter 2 – BAYESIAN INFERENCE , 1988 .
[5] Adam A. Porter,et al. Learning a classifier for false positive error reports emitted by static code analysis tools , 2017, MAPL@PLDI.
[6] Mira Mezini,et al. Taming reflection: Aiding static analysis in the presence of reflection and custom class loaders , 2011, 2011 33rd International Conference on Software Engineering (ICSE).
[7] Ondrej Lhoták,et al. From Datalog to flix: a declarative language for fixed points on lattices , 2016, PLDI.
[8] Xin Zhang,et al. Effective interactive resolution of static analysis alarms , 2017, Proc. ACM Program. Lang..
[9] Hongseok Yang,et al. Automatically generating features for learning program analysis heuristics for C-like languages , 2017, Proc. ACM Program. Lang..
[10] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[11] Xin Zhang,et al. A user-guided approach to program analysis , 2015, ESEC/SIGSOFT FSE.
[12] Marco Pistoia,et al. ALETHEIA: Improving the Usability of Static Security Analysis , 2014, CCS.
[13] Timon Gehr,et al. PSI: Exact Symbolic Inference for Probabilistic Programs , 2016, CAV.
[14] Junfeng Yang,et al. Correlation exploitation in error ranking , 2004, SIGSOFT '04/FSE-12.
[15] Luc De Raedt,et al. Inference and learning in probabilistic logic programs using weighted Boolean formulas , 2013, Theory and Practice of Logic Programming.
[16] Dawson R. Engler,et al. A Factor Graph Model for Software Bug Finding , 2007, IJCAI.
[17] Matthew Richardson,et al. Markov logic networks , 2006, Machine Learning.
[18] Jens Palsberg,et al. Race directed scheduling of concurrent programs , 2014, PPoPP '14.
[19] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[20] Benjamin Livshits,et al. Merlin: specification inference for explicit information flow problems , 2009, PLDI '09.
[21] Monica S. Lam,et al. Using Datalog with Binary Decision Diagrams for Program Analysis , 2005, APLAS.
[22] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[23] Ben Taskar,et al. Probabilistic Relational Models , 2014, Encyclopedia of Social Network Analysis and Mining.
[24] Martin L. Puterman,et al. Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .
[25] Mary Lou Soffa,et al. Path-based fault correlations , 2010, FSE '10.
[26] Isil Dillig,et al. Automated error diagnosis using abductive inference , 2012, PLDI.
[27] Stephen N. Freund,et al. FastTrack: efficient and precise dynamic race detection , 2009, PLDI '09.
[28] Yannis Smaragdakis,et al. Strictly declarative specification of sophisticated points-to analyses , 2009, OOPSLA.
[29] Michael Arntzenius,et al. Datafun: a functional Datalog , 2016, ICFP.
[30] Dawson R. Engler,et al. Z-Ranking: Using Statistical Analysis to Counter the Impact of Static Analysis Approximations , 2003, SAS.
[31] Davis E. King,et al. Dlib-ml: A Machine Learning Toolkit , 2009, J. Mach. Learn. Res..
[32] Serge Abiteboul,et al. Foundations of Databases: The Logical Level , 1995 .
[33] Ondrej Lhoták,et al. In defense of soundiness , 2015, Commun. ACM.
[34] Tom Fawcett,et al. An introduction to ROC analysis , 2006, Pattern Recognit. Lett..
[35] Joris M. Mooij,et al. libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models , 2010, J. Mach. Learn. Res..
[36] Hakjoo Oh,et al. Machine-Learning-Guided Selectively Unsound Static Analysis , 2017, 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
[37] Barbara G. Ryder,et al. Parameterized object sensitivity for points-to analysis for Java , 2005, TSEM.
[38] Swarat Chaudhuri,et al. Bayesian specification learning for finding API usage errors , 2017, ESEC/SIGSOFT FSE.
[39] Sam Blackshear,et al. Almost-correct specifications: a modular semantic framework for assigning confidence to warnings , 2013, PLDI 2013.
[40] Kwangkeun Yi,et al. Sound Non-statistical Clustering of Static Analysis Alarms , 2012, VMCAI.
[41] Laurie Hendren,et al. Soot: a Java bytecode optimization framework , 2010, CASCON.
[42] Norbert Fuhr,et al. Probabilistic Datalog—a logic for powerful retrieval methods , 1995, SIGIR '95.
[43] Stuart J. Russell,et al. BLOG: Probabilistic Models with Unknown Objects , 2005, IJCAI.
[44] Isil Dillig,et al. Apposcopy: semantics-based detection of Android malware through static analysis , 2014, SIGSOFT FSE.
[45] Kwangkeun Yi,et al. Taming False Alarms from a Domain-Unaware C Analyzer by a Bayesian Statistical Post Analysis , 2005, SAS.
[46] Andreas Krause,et al. Predicting Program Properties from "Big Code" , 2015, POPL.
[47] Amer Diwan,et al. The DaCapo benchmarks: java benchmarking development and analysis , 2006, OOPSLA '06.
[48] Kenneth L. McMillan,et al. Ivy: safety verification by interactive generalization , 2016, PLDI.
[49] Luc De Raedt,et al. Bayesian Logic Programming: Theory and Tool , 2007 .
[50] Sanjit A. Seshia,et al. Distribution-Aware Sampling and Weighted Model Counting for SAT , 2014, AAAI.
[51] Radu Grigore,et al. Abstraction refinement guided by a learnt probabilistic model , 2015, POPL.
[52] Alexander Aiken,et al. Effective static race detection for Java , 2006, PLDI '06.
[53] Dan Suciu,et al. Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.
[54] Xin Zhang,et al. Accelerating program analyses by cross-program training , 2016, OOPSLA.
[55] Michael I. Jordan,et al. Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.
[56] Michael Peyton Jones,et al. QL: Object-oriented Queries on Relational Data , 2016, ECOOP.