Homotopy, Homology and Persistent Homology Using \v{C}ech's Closure Spaces
暂无分享,去创建一个
[1] Michel Lamure. Espaces abstraits et reconnaissance des formes : application au traitement des images digitales , 1987 .
[2] S. Yau,et al. Homotopy theory for digraphs , 2014, 1407.0234.
[3] Steve Oudot,et al. The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.
[4] Stéphane Bonnevay,et al. A pretopological approach for structural analysis , 2002, Inf. Sci..
[5] Marc Bui,et al. Pollution Modeling and Simulation with Multi-Agent and Pretopology , 2009, Complex.
[6] Afsaneh Rezaie. Concepts of Digital Topology , 2015 .
[7] S. Yau,et al. Homologies of digraphs and Künneth formulas , 2017 .
[8] Fuzzy Geometry , 2020, A Modern Introduction to Fuzzy Mathematics.
[9] Michael Lesnick,et al. Universality of the Homotopy Interleaving Distance , 2017, ArXiv.
[10] Anton Dochtermann. Hom complexes and homotopy theory in the category of graphs , 2009, Eur. J. Comb..
[11] Vin de Silva,et al. Higher Interpolation and Extension for Persistence Modules , 2016, SIAM J. Appl. Algebra Geom..
[12] Abdul Salam Jarrah,et al. Homology Groups of Cubical Sets with Connections , 2018, Applied Categorical Structures.
[13] Reinhard Laubenbacher,et al. Foundations of a Connectivity Theory for Simplicial Complexes , 2001, Adv. Appl. Math..
[14] Arcwise Isometries,et al. A Course in Metric Geometry , 2001 .
[15] Vin de Silva,et al. Interleaving and Gromov-Hausdorff distance , 2017, 1707.06288.
[16] Reinhard C. Laubenbacher,et al. Perspectives on A-homotopy theory and its applications , 2005, Discret. Math..
[17] Ulrich Bauer,et al. Induced matchings and the algebraic stability of persistence barcodes , 2013, J. Comput. Geom..
[18] Leonidas J. Guibas,et al. Proximity of persistence modules and their diagrams , 2009, SCG '09.
[19] J. Graver,et al. Graduate studies in mathematics , 1993 .
[20] V. Capraro,et al. Discrete homology theory for metric spaces , 2013, 1306.3915.
[21] Frank Lebourgeois,et al. Pretopological approach for supervised learning , 1996, ICPR.
[22] A. B. Sossinsky,et al. Tolerance space theory and some applications , 1986 .
[23] Frank Lebourgeois,et al. A pretopology-based supervised pattern classifier , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).
[24] Vin de Silva,et al. Metrics for Generalized Persistence Modules , 2013, Found. Comput. Math..
[25] Hubert Emptoz,et al. A Pretopological Approach for Pattern Classification with Reject Options , 1998, SSPR/SPR.
[26] H. Poincaré. The Value of Science: Essential Writings of Henri Poincare , 2001 .
[27] Čech closure spaces: A unified framework for discrete and continuous homotopy , 2017, 1708.09558.
[28] Stéphane Bonnevay. Pretopological operators for gray-level image analysis , 2009, Stud. Inform. Univ..
[29] R. Laubenbacher,et al. Homotopy theory of graphs , 2004 .