Homotopy, Homology and Persistent Homology Using \v{C}ech's Closure Spaces

We use Čech closure spaces, also known as pretopological spaces, to develop a uniform framework that encompasses the discrete homology of metric spaces, the singular homology of topological spaces, and the homology of (directed) clique complexes, along with their respective homotopy theories. We obtain nine homology and six homotopy theories of closure spaces. We show how metric spaces and more general structures such as weighted directed graphs produce filtered closure spaces. For filtered closure spaces, our homology theories produce persistence modules. We extend the definition of Gromov-Hausdorff distance to filtered closure spaces and use it to prove that our persistence modules and their persistence diagrams are stable. We also extend the definitions Vietoris-Rips and Čech complexes to closure spaces and prove that their persistent homology is stable.

[1]  Michel Lamure Espaces abstraits et reconnaissance des formes : application au traitement des images digitales , 1987 .

[2]  S. Yau,et al.  Homotopy theory for digraphs , 2014, 1407.0234.

[3]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[4]  Stéphane Bonnevay,et al.  A pretopological approach for structural analysis , 2002, Inf. Sci..

[5]  Marc Bui,et al.  Pollution Modeling and Simulation with Multi-Agent and Pretopology , 2009, Complex.

[6]  Afsaneh Rezaie Concepts of Digital Topology , 2015 .

[7]  S. Yau,et al.  Homologies of digraphs and Künneth formulas , 2017 .

[8]  Fuzzy Geometry , 2020, A Modern Introduction to Fuzzy Mathematics.

[9]  Michael Lesnick,et al.  Universality of the Homotopy Interleaving Distance , 2017, ArXiv.

[10]  Anton Dochtermann Hom complexes and homotopy theory in the category of graphs , 2009, Eur. J. Comb..

[11]  Vin de Silva,et al.  Higher Interpolation and Extension for Persistence Modules , 2016, SIAM J. Appl. Algebra Geom..

[12]  Abdul Salam Jarrah,et al.  Homology Groups of Cubical Sets with Connections , 2018, Applied Categorical Structures.

[13]  Reinhard Laubenbacher,et al.  Foundations of a Connectivity Theory for Simplicial Complexes , 2001, Adv. Appl. Math..

[14]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[15]  Vin de Silva,et al.  Interleaving and Gromov-Hausdorff distance , 2017, 1707.06288.

[16]  Reinhard C. Laubenbacher,et al.  Perspectives on A-homotopy theory and its applications , 2005, Discret. Math..

[17]  Ulrich Bauer,et al.  Induced matchings and the algebraic stability of persistence barcodes , 2013, J. Comput. Geom..

[18]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[19]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[20]  V. Capraro,et al.  Discrete homology theory for metric spaces , 2013, 1306.3915.

[21]  Frank Lebourgeois,et al.  Pretopological approach for supervised learning , 1996, ICPR.

[22]  A. B. Sossinsky,et al.  Tolerance space theory and some applications , 1986 .

[23]  Frank Lebourgeois,et al.  A pretopology-based supervised pattern classifier , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[24]  Vin de Silva,et al.  Metrics for Generalized Persistence Modules , 2013, Found. Comput. Math..

[25]  Hubert Emptoz,et al.  A Pretopological Approach for Pattern Classification with Reject Options , 1998, SSPR/SPR.

[26]  H. Poincaré The Value of Science: Essential Writings of Henri Poincare , 2001 .

[27]  Čech closure spaces: A unified framework for discrete and continuous homotopy , 2017, 1708.09558.

[28]  Stéphane Bonnevay Pretopological operators for gray-level image analysis , 2009, Stud. Inform. Univ..

[29]  R. Laubenbacher,et al.  Homotopy theory of graphs , 2004 .