Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level

[1]  Huanming Yang,et al.  Genome-wide annotation of protein-coding genes in pig , 2022, BMC Biology.

[2]  J. Houp,et al.  First clinical‐grade porcine kidney xenotransplant using a human decedent model , 2022, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[3]  Xiaochen Bo,et al.  clusterProfiler 4.0: A universal enrichment tool for interpreting omics data , 2021, Innovation.

[4]  V. Gladyshev,et al.  A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription , 2021, Nature Communications.

[5]  P. Carmeliet,et al.  Tumor vessel co-option probed by single-cell analysis. , 2021, Cell reports.

[6]  Matthew S Macauley,et al.  Regulation of microglia population dynamics throughout development, health, and disease , 2021, Glia.

[7]  Ping Liu,et al.  A high-resolution cell atlas of the domestic pig lung and an online platform for exploring lung single-cell data. , 2021, Journal of genetics and genomics = Yi chuan xue bao.

[8]  Xun Xu,et al.  Single-cell atlas of domestic pig cerebral cortex and hypothalamus. , 2021, Science bulletin.

[9]  J. Lunney,et al.  Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA Sequencing , 2021, bioRxiv.

[10]  Owen J. L. Rackham,et al.  ShinyCell: simple and sharable visualization of single-cell gene expression data , 2021, Bioinform..

[11]  Haixi Sun,et al.  Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans , 2021, Cell Discovery.

[12]  Y. Goo,et al.  An experimental pig model with outer retinal degeneration induced by temporary intravitreal loading of N-methyl-N-nitrosourea during vitrectomy , 2021, Scientific reports.

[13]  Hannah A. Pliner,et al.  A human cell atlas of fetal gene expression , 2020, Science.

[14]  C. Lindskog,et al.  Enhanced Validation of Antibodies Enables the Discovery of Missing Proteins , 2020, Journal of proteome research.

[15]  Owen J. L. Rackham,et al.  ShinyCell: Simple and sharable visualisation of single-cell gene expression data , 2020, bioRxiv.

[16]  Catherine L. Worth,et al.  Cells of the adult human heart , 2020, Nature.

[17]  Hiroki Asari,et al.  Feedback from retinal ganglion cells to the inner retina , 2020, bioRxiv.

[18]  Lihua Zhang,et al.  Inference and analysis of cell-cell communication using CellChat , 2020, Nature Communications.

[19]  Irving L. Weissman,et al.  A single-cell transcriptomic atlas characterizes ageing tissues in the mouse , 2020, Nature.

[20]  A single-cell approach to engineer CD8+ T cells targeting cytomegalovirus , 2020, Cellular & Molecular Immunology.

[21]  M. Goumans,et al.  TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering , 2020, Frontiers in Cell and Developmental Biology.

[22]  Huanming Yang,et al.  Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis. , 2020, Cell metabolism.

[23]  I. Amit,et al.  Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program , 2020, Cell.

[24]  Dan Zhang,et al.  Construction of a human cell landscape at single-cell level , 2020, Nature.

[25]  H. Kandori Biophysics of rhodopsins and optogenetics , 2020, Biophysical Reviews.

[26]  L. Bolund,et al.  Single-Cell Transcriptome Atlas of Murine Endothelial Cells , 2020, Cell.

[27]  J. I. Izpisúa Belmonte,et al.  Single-Cell Transcriptomic Atlas of Primate Ovarian Aging , 2020, Cell.

[28]  Tiffany M. Tang,et al.  Patterns of Expression of Purinergic Receptor P2RY12, a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer’s Disease Brains , 2020, International journal of molecular sciences.

[29]  Huanming Yang,et al.  An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. , 2020, Cancer cell.

[30]  Mercedes Fernandez,et al.  Interplay Between Macrophages and Angiogenesis: A Double-Edged Sword in Liver Disease , 2019, Front. Immunol..

[31]  L. Bolund,et al.  Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation. , 2019, Journal of the American Society of Nephrology : JASN.

[32]  I. Amit,et al.  Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program , 2019, Cell.

[33]  Fenglin Liu,et al.  Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data , 2019, Genome Biology.

[34]  D. Sachs,et al.  Transplanting organs from pigs to humans , 2019, Science Immunology.

[35]  P. Carmeliet,et al.  The metabolic engine of endothelial cells , 2019, Nature metabolism.

[36]  Jonathan S. Packer,et al.  A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution , 2019, Science.

[37]  A. Puliafito,et al.  Dynamic Interplay between Pericytes and Endothelial Cells during Sprouting Angiogenesis , 2019, Cells.

[38]  Masato Hoshi,et al.  A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys , 2019, Nature Communications.

[39]  E. Wolf,et al.  Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation , 2019, Animal frontiers : the review magazine of animal agriculture.

[40]  Xinran Dong,et al.  Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis. , 2019, Cell stem cell.

[41]  J. Bischoff Endothelial-to-Mesenchymal Transition. , 2019, Circulation research.

[42]  Geng Chen,et al.  Single-Cell RNA-Seq Technologies and Related Computational Data Analysis , 2019, Front. Genet..

[43]  S. Jimenez,et al.  Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. , 2019, Physiological reviews.

[44]  Jonathan S. Packer,et al.  A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution , 2019, Science.

[45]  Asghar Fallah,et al.  Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. , 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[46]  Hui Hu,et al.  AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors , 2018, Nucleic Acids Res..

[47]  Gary D Bader,et al.  Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations , 2018, Nature Communications.

[48]  C. Lindskog,et al.  Enhanced validation of antibodies for research applications , 2018, Nature Communications.

[49]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[50]  P. ten Dijke,et al.  The therapeutic potential of targeting the endothelial-to-mesenchymal transition , 2018, Angiogenesis.

[51]  P. Verstreken,et al.  A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain , 2018, Cell.

[52]  A. Chade,et al.  A translational model of chronic kidney disease in swine. , 2018, American journal of physiology. Renal physiology.

[53]  A. van Oudenaarden,et al.  Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Cytoskeleton-Associated Protein 4 as a New Modulator of Fibroblasts Activation , 2018, Circulation.

[54]  Allon M. Klein,et al.  Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo , 2018, Science.

[55]  Fabian J Theis,et al.  Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics , 2018, Science.

[56]  Shihua Li,et al.  A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington’s Disease , 2018, Cell.

[57]  B. Barres,et al.  Microglia and macrophages in brain homeostasis and disease , 2017, Nature Reviews Immunology.

[58]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[59]  P. ten Dijke,et al.  TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases , 2017, International journal of molecular sciences.

[60]  I. Amit,et al.  Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner , 2017, Nature Communications.

[61]  S. Tas,et al.  Endothelial cells: From innocent bystanders to active participants in immune responses. , 2017, Autoimmunity reviews.

[62]  Marenao Tanaka,et al.  Ectopic Fatty Acid–Binding Protein 4 Expression in the Vascular Endothelium is Involved in Neointima Formation After Vascular Injury , 2017, Journal of the American Heart Association.

[63]  Dylan Skola,et al.  Transcriptional control of microglia phenotypes in health and disease. , 2017, The Journal of clinical investigation.

[64]  E. Wolf,et al.  Retinopathy with central oedema in an INSC94Y transgenic pig model of long-term diabetes , 2017, Diabetologia.

[65]  Abhijeet R. Sonawane,et al.  Understanding Tissue-Specific Gene Regulation , 2017, bioRxiv.

[66]  E. Dejana,et al.  The molecular basis of endothelial cell plasticity , 2017, Nature Communications.

[67]  A. Saghatelian,et al.  SREBP1 Contributes to Resolution of Pro-inflammatory TLR4 Signaling by Reprogramming Fatty Acid Metabolism. , 2017, Cell metabolism.

[68]  W. Kiosses,et al.  Macrophages form functional vascular mimicry channels in vivo , 2016, Scientific Reports.

[69]  Rajesh Raju,et al.  VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis , 2016, Journal of Cell Communication and Signaling.

[70]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[71]  C. Tripodo,et al.  C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation , 2016, Nature Communications.

[72]  D. Ayares,et al.  The role of genetically engineered pigs in xenotransplantation research , 2016, The Journal of pathology.

[73]  M. Schwartz,et al.  Endothelial-to-mesenchymal transition drives atherosclerosis progression. , 2015, The Journal of clinical investigation.

[74]  M. Bacci,et al.  In vitro differentiation of porcine aortic vascular precursor cells to endothelial and vascular smooth muscle cells. , 2015, American journal of physiology. Cell physiology.

[75]  Jussi Taipale,et al.  Conservation of transcription factor binding specificities across 600 million years of bilateria evolution , 2015, eLife.

[76]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[77]  C. Patterson,et al.  The role of BMPs in endothelial cell function and dysfunction , 2014, Trends in Endocrinology & Metabolism.

[78]  N. Kostomitsopoulos,et al.  A comparative anatomic and physiologic overview of the porcine heart. , 2014, Journal of the American Association for Laboratory Animal Science : JAALAS.

[79]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[80]  R. Virmani,et al.  TGF-β Signaling Mediates Endothelial-to-Mesenchymal Transition (EndMT) During Vein Graft Remodeling , 2014, Science Translational Medicine.

[81]  A. Orekhov,et al.  Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis , 2014, Front. Physiol..

[82]  Hong Wang,et al.  An evolving new paradigm: endothelial cells – conditional innate immune cells , 2013, Journal of Hematology & Oncology.

[83]  N. Van Rooijen,et al.  Macrophages play a key role in angiogenesis and adipogenesis in a mouse tissue engineering model. , 2013, Tissue engineering. Part A.

[84]  R. Prather,et al.  Advancing swine models for human health and diseases. , 2013, Missouri medicine.

[85]  R. Prather,et al.  Genetically engineered pig models for human diseases. , 2013, Annual review of animal biosciences.

[86]  Lars Bolund,et al.  Familial Hypercholesterolemia and Atherosclerosis in Cloned Minipigs Created by DNA Transposition of a Human PCSK9 Gain-of-Function Mutant , 2013, Science Translational Medicine.

[87]  Bronwen L. Aken,et al.  Analyses of pig genomes provide insight into porcine demography and evolution , 2012, Nature.

[88]  M. Iruela-Arispe,et al.  Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. , 2012, Blood.

[89]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[90]  T. Pannabecker Structure and function of the thin limbs of the loop of Henle. , 2012, Comprehensive Physiology.

[91]  A. Dudley,et al.  Vascular Mimicry: Concepts and Implications for Anti-Angiogenic Therapy. , 2012, Current angiogenesis.

[92]  G. Shi,et al.  CD31: beyond a marker for endothelial cells. , 2012, Cardiovascular research.

[93]  F. Clubb,et al.  Swine as Models in Biomedical Research and Toxicology Testing , 2012, Veterinary pathology.

[94]  Ian M. Donaldson,et al.  iRefR: an R package to manipulate the iRefIndex consolidated protein interaction database , 2011, BMC Bioinformatics.

[95]  Gabriel Kreiman,et al.  Conservation of transcription factor binding events predicts gene expression across species , 2011, Nucleic acids research.

[96]  N. Chatauret,et al.  Contribution of Large Pig for Renal Ischemia-Reperfusion and Transplantation Studies: The Preclinical Model , 2011, Journal of biomedicine & biotechnology.

[97]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[98]  Sheldon Middleton,et al.  Porcine ophthalmology. , 2010, The Veterinary clinics of North America. Food animal practice.

[99]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[100]  Surbhi Jain,et al.  AIF-1 expression regulates endothelial cell activation, signal transduction, and vasculogenesis. , 2009, American journal of physiology. Cell physiology.

[101]  Marie-José Goumans,et al.  TGF-β signaling in vascular biology and dysfunction , 2009, Cell Research.

[102]  David K. Meyerholz,et al.  Disruption of the CFTR Gene Produces a Model of Cystic Fibrosis in Newborn Pigs , 2008, Science.

[103]  R. Kalluri,et al.  The role of endothelial-to-mesenchymal transition in cancer progression , 2008, British Journal of Cancer.

[104]  M. Tansey,et al.  Regulator of G-Protein Signaling 10 Promotes Dopaminergic Neuron Survival via Regulation of the Microglial Inflammatory Response , 2008, The Journal of Neuroscience.

[105]  M. Rehli,et al.  Expression of CD68 in Non‐Myeloid Cell Types , 2008, Scandinavian journal of immunology.

[106]  Michael J. Berry,et al.  Sophisticated temporal pattern recognition in retinal ganglion cells. , 2008, Journal of neurophysiology.

[107]  L. Bolund,et al.  Piglets born from handmade cloning, an innovative cloning method without micromanipulation. , 2007, Theriogenology.

[108]  Xueli Yuan,et al.  Endothelial-to-mesenchymal transition contributes to cardiac fibrosis , 2007, Nature Medicine.

[109]  E. Dejana,et al.  Immune Regulation by Microvascular Endothelial Cells: Directing Innate and Adaptive Immunity, Coagulation, and Inflammation1 , 2007, The Journal of Immunology.

[110]  K. Red-Horse,et al.  Endothelium-microenvironment interactions in the developing embryo and in the adult. , 2007, Developmental cell.

[111]  D. Mukhopadhyay,et al.  The porcine remnant kidney model of chronic renal insufficiency. , 2006, The Journal of surgical research.

[112]  Hirohisa Yano,et al.  Angiogenesis in Cancer , 2006, Vascular health and risk management.

[113]  Peter Vajkoczy,et al.  Combined inhibition of VEGF‐ and PDGF‐signaling enforces tumor vessel regression by interfering with pericyte‐mediated endothelial cell survival mechanisms , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[114]  Benjamin D. Sachs,et al.  RORα Coordinates Reciprocal Signaling in Cerebellar Development through Sonic hedgehog and Calcium-Dependent Pathways , 2003, Neuron.

[115]  P. Carmeliet Angiogenesis in health and disease , 2003, Nature Medicine.

[116]  P. Newman,et al.  Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[117]  John Savill,et al.  Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment , 2002, Nature.

[118]  R. McClellan,et al.  Swine in biomedical research. , 1966, Science.