Nonlinear Effects in Brand Choice Models: Comparing Heterogeneous Latent Class To Homogeneous Nonlinear Models

[1]  John D. C. Little,et al.  A Logit Model of Brand Choice Calibrated on Scanner Data , 2011, Mark. Sci..

[2]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[3]  Harald Hruschka,et al.  A flexible brand choice model based on neural net methodology A comparison to the linear utility multinomial logit model and its latent class extension , 2002, OR Spectr..

[4]  M. Abe,et al.  Investigation of the Stochastic Utility Maximization Process of Consumer Brand Choice by Semiparametric Modeling , 2000 .

[5]  Dwight Merunka,et al.  Neural networks and the multinomial logit for brand choice modelling: a hybrid approach , 2000 .

[6]  Makoto Abe,et al.  A Generalized Additive Model for Discrete-Choice Data , 1999 .

[7]  Charles B. Weinberg,et al.  The Impact of Heterogeneity in Purchase Timing and Price Responsiveness on Estimates of Sticker Shock Effects , 1999 .

[8]  Makoto Abe,et al.  Measuring consumer, nonlinear brand choice response to price , 1998 .

[9]  Michel Wedel,et al.  A model for the effects of psychological pricing in Gabor-Granger price studies , 1998 .

[10]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .

[11]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[12]  Greg M. Allenby,et al.  The effects of in-store displays and feature advertising on consideration sets , 1995 .

[13]  Purushottam Papatla,et al.  Loyalty differences in the use of internal and external reference prices , 1995 .

[14]  Greg M. Allenby,et al.  Modeling Household Purchase Behavior with Logistic Normal Regression , 1994 .

[15]  J. Little,et al.  An Empirical Analysis of Latitude of Price Acceptance in Consumer Package Goods , 1994 .

[16]  Peter E. Rossi,et al.  An exact likelihood analysis of the multinomial probit model , 1994 .

[17]  Lee G. Cooper,et al.  The Discounting of Discounts and Promotion Thresholds , 1992 .

[18]  Pradeep K. Chintagunta,et al.  Estimating a Multinomial Probit Model of Brand Choice Using the Method of Simulated Moments , 1992 .

[19]  Peter S. Fader,et al.  Estimating Nonlinear Parameters in the Multinomial Logit Model , 1992 .

[20]  Russell S. Winer,et al.  An Empirical Analysis of Internal and External Reference Prices Using Scanner Data , 1992 .

[21]  Fred S. Zufryden,et al.  Evaluating the Impact of Advertising Media Plans: A Model of Consumer Purchase Dynamics Using Single-Source Data , 1991 .

[22]  Manohar U. Kalwani,et al.  A Price Expectations Model of Customer Brand Choice , 1990 .

[23]  Gary J. Russell,et al.  A Probabilistic Choice Model for Market Segmentation and Elasticity Structure , 1989 .

[24]  R. Bucklin,et al.  Reference Effects of Price and Promotion on Brand Choice Behavior , 1989 .

[25]  J. Friedman,et al.  FLEXIBLE PARSIMONIOUS SMOOTHING AND ADDITIVE MODELING , 1989 .

[26]  Sunil Gupta Impact of Sales Promotions on when, what, and how Much to Buy , 1988 .

[27]  L. Krishnamurthi,et al.  A Model of Brand Choice and Purchase Quantity Price Sensitivities , 1988 .

[28]  Russell S. Winer,et al.  A reference price model of brand choice for frequently purchased products. , 1986 .

[29]  William R. Swinyard,et al.  Market Segmentation , 1986 .

[30]  A. Tversky,et al.  Decision, probability, and utility: Prospect theory: An analysis of decision under risk , 1979 .

[31]  Wilfred W. Recker,et al.  The Multinomial, Multiattribute Logit Choice Model , 1979 .

[32]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[33]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[34]  K. B. Monroe Buyers’ Subjective Perceptions of Price , 1973 .

[35]  Extension of the Spectrum , 1942, Science.

[36]  C. J. Stone,et al.  Polychotomous Regression , 1995 .

[37]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk , 1995 .

[38]  Y. Truong,et al.  Hazard RegressionCharles Kooperberg , 1994 .

[39]  G. Nürnberger Approximation by Spline Functions , 1989 .

[40]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[41]  P. M. Prenter Splines and variational methods , 1975 .

[42]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .