Fixed-Functionals of three-dimensional Quantum Einstein Gravity
暂无分享,去创建一个
[1] Frank Saueressig,et al. Ghost wavefunction renormalization in asymptotically safe quantum gravity , 2010, 1001.5032.
[2] P. Townsend,et al. Massive gravity in three dimensions. , 2009, Physical review letters.
[3] M. Niedermaier,et al. The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.
[4] M. Reuter,et al. Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .
[5] Frank Saueressig,et al. The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.
[6] Christoph Rahmede,et al. Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.
[7] Christoph Rahmede,et al. ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.
[8] O. Zanusso,et al. Off-diagonal heat-kernel expansion and its application to fields with differential constraints , 2011, 1112.4856.
[9] Martin Reuter,et al. Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.
[10] M. Reuter,et al. The role of background independence for asymptotic safety in Quantum Einstein Gravity , 2009, 0903.2971.
[11] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[12] Frank Saueressig,et al. The universal RG machine , 2010, 1012.3081.
[13] A. Codello. Large N quantum gravity , 2011, 1108.1908.
[14] J. Braun. Fermion interactions and universal behavior in strongly interacting theories , 2011, 1108.4449.
[15] Tim R. Morris. Derivative expansion of the exact renormalization group , 1994 .
[16] C. Wetterich,et al. Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .
[17] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[18] Astrid Eichhorn,et al. Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.
[19] J. Vidal,et al. Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order ∂4 , 2003 .
[20] P. Townsend,et al. More on Massive 3D Gravity , 2009, 0905.1259.
[21] Oliver J. Rosten. Fundamentals of the Exact Renormalization Group , 2010, 1003.1366.
[22] S. Weinberg. Ultraviolet divergences in quantum theories of gravitation. , 1980 .
[23] C. Bervillier,et al. Exact renormalization group equations. An Introductory review , 2000 .
[24] Andreas Nink,et al. On the physical mechanism underlying asymptotic safety , 2012, 1208.0031.
[25] A. Wipf,et al. Functional renormalization group of the nonlinear sigma model and theO(N)universality class , 2012, 1207.4499.
[26] M. Reuter,et al. Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .
[27] Frank Saueressig,et al. Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.
[28] S. Nagy,et al. Infrared fixed point in quantum Einstein gravity , 2012, 1203.6564.
[29] F. Saueressig,et al. A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior , 2002 .
[30] Frank Saueressig,et al. Quantum Einstein gravity , 2012, 1202.2274.
[31] A. Bonanno,et al. Inflationary solutions in asymptotically safe f(R) theories , 2010, 1006.0192.
[32] Holger Gies. Introduction to the Functional RG and Applications to Gauge Theories , 2006 .
[33] Steven Weinberg,et al. What is Quantum Field Theory, and What Did We Think It Is? , 1996, hep-th/9702027.
[34] D. Litim,et al. Limit cycles and quantum gravity , 2012, 1205.4218.
[35] O. Zanusso,et al. On the non-local heat kernel expansion , 2012, 1203.2034.
[36] F. Saueressig,et al. Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .
[37] H. Gies,et al. Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.
[38] Christoph Rahmede,et al. Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.
[39] Frank Saueressig,et al. Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.
[40] S. Hawking,et al. General Relativity; an Einstein Centenary Survey , 1979 .
[41] Norman M. Dott. An Introductory Review , 1962 .
[42] R. Percacci,et al. Conformally reduced quantum gravity revisited , 2009, 0904.2510.
[43] Francesco Caravelli,et al. The local potential approximation in quantum gravity , 2012, 1204.3541.
[44] Frank Saueressig,et al. ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.
[45] J. S. Dowker,et al. Effective Lagrangian and energy-momentum tensor in de Sitter space , 1976 .
[46] M. Reuter,et al. Running boundary actions, Asymptotic Safety, and black hole thermodynamics , 2012, 1205.3583.
[47] Frank Saueressig,et al. On the Renormalization Group Flow of Gravity , 2007, 0712.0445.
[48] Howard Georgi,et al. Effective Field Theory , 1993 .
[49] Frank Saueressig,et al. Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.
[50] Jan M. Pawlowski,et al. The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows , 2012, 1203.4207.
[51] S. Paycha,et al. Geometric and Topological Methods for Quantum Field Theory , 2007 .
[52] Martin Reuter,et al. Nonperturbative evolution equation for quantum gravity , 1998 .
[53] N. Ohta. Beta function and asymptotic safety in three-dimensional higher derivative gravity , 2012, 1205.0476.
[54] O. Zanusso,et al. Higher Derivative Gravity from the Universal Renormalization Group Machine , 2011, 1111.1743.
[55] A. Codello,et al. Low energy quantum gravity from the effective average action , 2010, 1006.3808.
[56] C. Rahmede. Old and new results from the Wilsonian approach to gravity , 2011 .
[57] Martin Reuter,et al. Background Independence and Asymptotic Safety in Conformally Reduced Gravity , 2008, 0801.3287.
[58] D. Litim. Optimized renormalization group flows , 2001, hep-th/0103195.
[59] A. Codello. Scaling solutions in a continuous dimension , 2012, 1204.3877.
[60] S. Weinberg. Effective Field Theory, Past and Future , 2009, 0908.1964.
[61] Frank Saueressig,et al. Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.
[62] G. Hooft. The Conformal Constraint in Canonical Quantum Gravity , 2010, 1011.0061.
[63] E. Elizalde,et al. One-loop f(R) gravity in de Sitter universe , 2005, hep-th/0501096.
[64] D. Litim. Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.
[65] Wataru Souma,et al. Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.
[66] Carlo Rovelli. Quantum gravity , 2008, Scholarpedia.
[67] Roberto Percacci,et al. The running gravitational couplings , 1998 .
[68] Bertrand Delamotte,et al. An Introduction to the Nonperturbative Renormalization Group , 2007, cond-mat/0702365.
[69] D. Litim. Fixed points of quantum gravity , 2003, hep-th/0312114.
[70] Elements of the Continuous Renormalization Group , 1998, hep-th/9802039.
[71] D. Litim,et al. Ising exponents from the functional renormalisation group , 2010, 1009.1948.
[72] A. Bonanno,et al. Universality and Symmetry Breaking in Conformally Reduced Quantum Gravity , 2012, 1206.6531.
[73] Jan M. Pawlowski. Aspects of the functional renormalisation group , 2007 .
[74] A. Codello,et al. Polyakov effective action from functional renormalization group equation , 2010, 1004.2171.
[75] M. Reuter,et al. Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .
[76] I. Avramidi. Heat Kernel and Quantum Gravity , 2000 .