Changes in spore chemistry and appearance with increasing maturity

[1]  M. Sephton,et al.  A novel palaeoaltimetry proxy based on spore and pollen wall chemistry , 2012 .

[2]  A. Scott,et al.  Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores. , 2012, The New phytologist.

[3]  A. Scott,et al.  296 Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Carboniferous spores , 2012 .

[4]  J. Watson,et al.  Formation of a polyalkyl macromolecule from the hydrolysable component within sporopollenin during heating/pyrolysis experiments with Lycopodium spores , 2012 .

[5]  J. Singarayer,et al.  Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin. , 2011, The New phytologist.

[6]  S. Self,et al.  UV-B absorbing pigments in spores: biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change , 2011 .

[7]  R. Goodhue,et al.  Palynomorph Darkness Index (PDI) — A New Technique for Assessing Thermal Maturity , 2010 .

[8]  B. Zimmermann,et al.  Characterization of Pollen by Vibrational Spectroscopy , 2010, Applied spectroscopy.

[9]  C. Marshall,et al.  FTIR characterisation of the chemical composition of Silurian miospores (cryptospores and trilete spores) from Gotland, Sweden , 2010 .

[10]  A. Scott,et al.  Pennsylvanian paleokarst and cave fills from northern Illinois, USA: A window into late Carboniferous environments and landscapes , 2009 .

[11]  A. Hérissé,et al.  Origin and Radiation of the Earliest Vascular Land Plants , 2009, Science.

[12]  S. Planke,et al.  Siberian gas venting and the end-Permian environmental crisis , 2008 .

[13]  J. Pyle,et al.  Plant spore walls as a record of long-term changes in ultraviolet-B radiation , 2008 .

[14]  J. Pyle,et al.  The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  S. Self,et al.  Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[16]  C. Largeau,et al.  Kerogen origin, evolution and structure , 2007 .

[17]  R. Evershed,et al.  Evidence for the in situ polymerisation of labile aliphatic organic compounds during the preservation of fossil leaves: Implications for organic matter preservation , 2007 .

[18]  R. Evershed,et al.  Molecular preservation of plant and insect cuticles from the Oligocene Enspel Formation, Germany : Evidence against derivation of aliphatic polymer from sediment , 2007 .

[19]  A. Schimmelmann,et al.  FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales , 2005 .

[20]  J. Rozema,et al.  Development of a proxy for past surface UV-B irradiation: a thermally assisted hydrolysis and methylation py-GC/MS method for the analysis of pollen and spores. , 2005, Analytical chemistry.

[21]  M. Sephton,et al.  Environmental mutagenesis during the end-Permian ecological crisis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Wellman,et al.  Fragments of the earliest land plants , 2003, Nature.

[23]  J. Rozema,et al.  UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. , 2001, Journal of photochemistry and photobiology. B, Biology.

[24]  J. Rozema,et al.  (Poly)phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B – A new proxy for the reconstruction of past solar UV-B? , 2001, Plant Ecology.

[25]  J. Marshall,et al.  The thermal evolution of sporopollenin , 2000 .

[26]  J. Marshall Quantitative spore colour , 1991, Journal of the Geological Society.

[27]  F. Staplin Interpretation of thermal history from color of particulate organic matter — A review , 1977 .

[28]  É. Boureau,et al.  Traite de Paleobotanique. Tome II. Bryophyta, Psilophyta, Lycophyta , 1968 .

[29]  C. A. Hopping,et al.  Palynology and the oil industry , 1967 .

[30]  R. Evershed,et al.  Experimental evidence for the formation of geomacromolecules from plant leaf lipids. , 2007 .

[31]  J. D. de Leeuw,et al.  Biomacromolecules of Algae and Plants and their Fossil Analogues , 2005, Plant Ecology.

[32]  L. Björn,et al.  Depletion of stratospheric ozone and solar UV-B radiation: evolution of land plants, UV-screens and function of phenolis , 1999 .

[33]  R. Lupia,et al.  Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record , 1999, Paleobiology.

[34]  L. Björn,et al.  UV-B as an environmental factor in plant life: stress and regulation. , 1997, Trends in ecology & evolution.

[35]  É. Boureau Traité de paléobotanique , 1964 .