A superelastic variable stiffness knee actuator for a knee-ankle-foot orthosis

............................................................................................................................. iii Acknowledgements ............................................................................................................ vi Table of

[1]  C W Radcliffe Four-bar linkage prosthetic knee mechanisms: Kinematics, alignment and prescription criteria , 1994, Prosthetics and orthotics international.

[2]  Michael J. Miller,et al.  Modeling and validation of additively manufactured porous nitinol implants , 2014 .

[3]  S. E. Irby,et al.  Gait of stance control orthosis users: The Dynamic Knee Brace System , 2005, Prosthetics and orthotics international.

[4]  S. E. Irby,et al.  Consumer Opinions of a Stance Control Knee Orthosis , 2006, Prosthetics and orthotics international.

[5]  Mohammad Elahinia,et al.  Coupled rate-dependent superelastic behavior of shape memory alloy bars induced by combined axial-torsional loading: a semi-analytic modeling , 2013 .

[6]  José Luis Pons Rovira,et al.  Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness , 2007, Medical & Biological Engineering & Computing.

[7]  J. Kofman,et al.  Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis. , 2006, Clinical biomechanics.

[8]  Aaron M. Dollar,et al.  Design and Functional Evaluation of a Quasi-Passive Compliant Stance Control Knee–Ankle–Foot Orthosis , 2014, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[9]  David Dean,et al.  Metals for bone implants. Part 1. Powder metallurgy and implant rendering. , 2014, Acta biomaterialia.

[10]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[11]  Richard R Neptune,et al.  Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. , 2002, Gait & posture.

[12]  H. Beckerman,et al.  The effects of knee-ankle-foot orthoses in the treatment of Duchenne muscular dystrophy: review of the literature , 2000, Clinical rehabilitation.

[13]  Jun-Ming Lu,et al.  Real-time gait cycle parameters recognition using a wearable motion detector , 2011, Proceedings 2011 International Conference on System Science and Engineering.

[14]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[15]  L. C. Brinson,et al.  Deformation of Shape Memory Alloys Due to Thermo-Induced Transformation , 1996 .

[16]  T. Tadaki,et al.  Shape Memory Alloys , 2002 .

[17]  O. Kameyama,et al.  Newly designed computer controlled knee-ankle-foot orthosis (Intelligent Orthosis) , 1998, Prosthetics and orthotics international.

[18]  J. Delisa,et al.  Physical medicine and rehabilitation : principles and practice , 2005 .

[19]  Thomas Schmalz,et al.  A functional comparison of conventional knee–ankle–foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters , 2016, Prosthetics and orthotics international.

[20]  Sungjae Hwang,et al.  Biomechanical effect of electromechanical knee–ankle–foot-orthosis on knee joint control in patients with poliomyelitis , 2008, Medical & Biological Engineering & Computing.

[21]  K. Tanaka,et al.  A thermomechanical description of materials with internal variables in the process of phase transitions , 1982 .

[22]  Robert J. Wood,et al.  Applicability of Shape Memory Alloy Wire for an Active, Soft Orthotic , 2011, Journal of Materials Engineering and Performance.

[23]  K R Kaufman,et al.  Gait patterns of patients with inclusion body myositis. , 2011, Gait & posture.

[24]  M. Elahinia,et al.  Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling , 2014 .

[25]  M. Elahinia,et al.  Constitutive modeling of tension-torsion coupling and tension-compression asymmetry in NiTi shape memory alloys , 2014 .

[26]  G. Guénin,et al.  Effects of Impurities Content (Oxygen, Carbon, Nitrogen) on Microstructure and Phase Transformation Temperatures of Near Equiatomic TiNi Shape Memory Alloys , 1997 .

[27]  J. Kofman,et al.  Design and Evaluation of a Stance-Control Knee-Ankle-Foot Orthosis Knee Joint , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[28]  M. Elahinia,et al.  Additive Manufacturing of Nitinol Shape Memory Alloys to Overcome Challenges in Conventional Nitinol Fabrication , 2014 .

[29]  S. E. Irby,et al.  Gait changes over time in stance control orthosis users , 2007, Prosthetics and orthotics international.

[30]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[31]  Valery I. Levitas,et al.  Micromechanical modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation , 2009 .

[32]  Daniel P. Ferris,et al.  A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition , 2009, Journal of NeuroEngineering and Rehabilitation.

[33]  Farhad Tabatabai Ghomshe,et al.  Gait evaluation of new powered knee–ankle–foot orthosis in able-bodied persons: A pilot study , 2014, Prosthetics and orthotics international.

[34]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[35]  T. Yakimovich,et al.  Design, Construction and Evaluation of an Electromechanical Stance-Control Knee-Ankle-Foot Orthosis , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[36]  G.S. Sawicki,et al.  Powered lower limb orthoses: applications in motor adaptation and rehabilitation , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[37]  Marko B. Popovic,et al.  Angular momentum regulation during human walking: biomechanics and control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[38]  J. Michael,et al.  Preliminary Evidence for Effectiveness of a Stance Control Orthosis , 2004 .

[39]  M. Elahinia,et al.  A Modified Microplane Model Using Transformation Surfaces to Consider Loading History on Phase Transition in Shape Memory Alloys , 2014 .

[40]  Francesca Passaretti,et al.  Applications of Shape Memory Alloys for Neurology and Neuromuscular Rehabilitation , 2015, Journal of functional biomaterials.

[41]  Steven H. Collins,et al.  Dynamic Walking Principles Applied to Human Gait. , 2008 .

[42]  M. Brandstater,et al.  Physical medicine and rehabilitation. , 1995, JAMA.

[43]  Feng Tian,et al.  A Dynamic Knee-Ankle-Foot Orthosis With Superelastic Actuators , 2013 .

[44]  Carlotta Mummolo,et al.  Quantifying dynamic characteristics of human walking for comprehensive gait cycle. , 2013, Journal of biomechanical engineering.

[45]  Edward D Lemaire,et al.  Engineering design review of stance-control knee-ankle-foot orthoses. , 2009, Journal of rehabilitation research and development.

[46]  D S Childress,et al.  A preliminary investigation of pelvic obliquity patterns during gait in persons with transtibial and transfemoral amputation. , 2000, Journal of rehabilitation research and development.

[47]  K R Kaufman,et al.  Automatic control design for a dynamic knee-brace system. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[48]  Stefano Viscuso,et al.  Shape Memory Actuators for Medical Rehabilitation and Neuroscience , 2012 .

[49]  Mohammad Elahinia,et al.  An Investigation of Effective Process Parameters on Phase Transformation Temperature of Nitinol Manufactured by Selective Laser Melting , 2014 .

[50]  Gait Evaluation of a New Electromechanical Stance-Control Knee-Ankle-Foot Orthosis , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[51]  Jacqueline S. Hebert,et al.  Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis. , 2005, Archives of physical medicine and rehabilitation.

[52]  K R Kaufman,et al.  Optimization and application of a wrap-spring clutch to a dynamic knee-ankle-foot orthosis. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[53]  Christian Lexcellent,et al.  Characterization, thermomechanical behaviour and micromechanical-based constitutive model of shape-memory CuZnAl single crystals , 1996 .

[54]  Richard R Neptune,et al.  Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. , 2003, Gait & posture.

[55]  M. Elahinia,et al.  Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension–torsion loading , 2015 .

[56]  Erwin Stein,et al.  Simple micromechanical model of thermoelastic martensitic transformations , 1997 .

[57]  Diana Cardenas Md Mha Spinal Cord Medicine: Principles and Practice , 2002 .

[58]  S. Gard,et al.  The effect of pelvic list on the vertical displacement of the trunk during normal walking , 1997 .

[59]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[60]  P O Riley,et al.  Hip hiking and circumduction: quantitative definitions. , 2000, American journal of physical medicine & rehabilitation.

[61]  Mohammad Elahinia,et al.  An SMA Passive Ankle Foot Orthosis: Design, Modeling, and Experimental Evaluation , 2014 .

[62]  K. Newell,et al.  Walking speed influences on gait cycle variability. , 2007, Gait & posture.

[63]  Masood Taheri Andani,et al.  Constitutive modeling of superelastic shape memory alloys considering rate dependent non-mises tension-torsion behavior , 2013 .

[64]  Jong Wan Hu Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses , 2014, Materials.

[65]  Reginald DesRoches,et al.  Coupled thermo-mechanical analysis of shape memory alloy circular bars in pure torsion , 2012 .

[66]  M. Elahinia,et al.  Modifying the torque–angle behavior of rotary shape memory alloy actuators through axial loading: A semi-analytical study of combined tension–torsion behavior , 2013 .

[67]  Farzam Farahmand,et al.  The gait and energy efficiency of stance control knee–ankle–foot orthoses: A literature review , 2016, Prosthetics and orthotics international.

[68]  Ronald Poppe,et al.  Vision-based human motion analysis: An overview , 2007, Comput. Vis. Image Underst..

[69]  S. Hutchins,et al.  The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis , 2013, Prosthetics and orthotics international.

[70]  Gholamreza Aminian,et al.  Design and simulation of a new powered gait orthosis for paraplegic patients , 2012, Prosthetics and orthotics international.

[71]  Torsten Bumgarner,et al.  Biomechanics and Motor Control of Human Movement , 2013 .

[72]  Eduardo Rocon,et al.  Biologically based design of an actuator system for a knee–ankle–foot orthosis , 2009 .

[73]  P R Cavanagh,et al.  Three-dimensional kinematics of the human knee during walking. , 1992, Journal of biomechanics.