Mn2+ modulates the expression of cellulase genes in Trichoderma reesei Rut-C30 via calcium signaling

[1]  J. Ariño,et al.  Two NRAMP6 Isoforms Function as Iron and Manganese Transporters and Contribute to Disease Resistance in Rice. , 2017, Molecular plant-microbe interactions : MPMI.

[2]  M. Marchetti‐Deschmann,et al.  Trichoderma reesei xylanase 5 is defective in the reference strain QM6a but functional alleles are present in other wild-type strains , 2017, Applied Microbiology and Biotechnology.

[3]  J. Helmann,et al.  Bacillus subtilis MntR coordinates the transcriptional regulation of manganese uptake and efflux systems , 2017, Molecular microbiology.

[4]  D. Wei,et al.  A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei. , 2016, Journal of biotechnology.

[5]  B. Seiboth,et al.  Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei , 2016, Microbial Cell Factories.

[6]  Guoping Zhao,et al.  Characterization of the Ca2+‐responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut‐C30 , 2016, Molecular microbiology.

[7]  D. Wei,et al.  Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0 , 2016, Scientific Reports.

[8]  Xiao-Xia Xia,et al.  Induction of ganoderic acid biosynthesis by Mn2+ in static liquid cultivation of Ganoderma lucidum. , 2014, Biotechnology and bioengineering.

[9]  S. Thewes Calcineurin-Crz1 Signaling in Lower Eukaryotes , 2014, Eukaryotic Cell.

[10]  C. Kubicek,et al.  Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose , 2013, Biotechnology for Biofuels.

[11]  Xu Fang,et al.  A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei , 2013, PloS one.

[12]  E. Espeso,et al.  Phospho‐regulation and nucleocytoplasmic trafficking of CrzA in response to calcium and alkaline‐pH stress in Aspergillus nidulans , 2013, Molecular microbiology.

[13]  Xiao-Xia Xia,et al.  Induced effect of Na+ on ganoderic acid biosynthesis in static liquid culture of Ganoderma lucidum via calcineurin signal transduction , 2013, Biotechnology and bioengineering.

[14]  L. Poughon,et al.  Cellulase activity mapping of Trichoderma reesei cultivated in sugar mixtures under fed-batch conditions , 2013, Biotechnology for Biofuels.

[15]  J. Zhong,et al.  Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. , 2012, Biotechnology advances.

[16]  E. J. Bowman,et al.  The pmr Gene, Encoding a Ca2+-ATPase, Is Required for Calcium and Manganese Homeostasis and Normal Development of Hyphae and Conidia in Neurospora crassa , 2012, Eukaryotic Cell.

[17]  A. Neagoe,et al.  Overexpression of the PHO84 gene causes heavy metal accumulation and induces Ire1p-dependent unfolded protein response in Saccharomyces cerevisiae cells , 2012, Applied Microbiology and Biotechnology.

[18]  T. Kieselbach,et al.  Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source , 2011, Microbial cell factories.

[19]  Mingchun Li,et al.  Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors. , 2011, FEMS yeast research.

[20]  M. Schmoll,et al.  New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina) , 2011, Fungal genetics and biology : FG & B.

[21]  Andrija Finka,et al.  Heat perception and signalling in plants: a tortuous path to thermotolerance. , 2011, The New phytologist.

[22]  Monika Schmoll,et al.  Biology and biotechnology of Trichoderma , 2010, Applied Microbiology and Biotechnology.

[23]  J. Ariño,et al.  Alkali Metal Cation Transport and Homeostasis in Yeasts , 2010, Microbiology and Molecular Biology Reviews.

[24]  M. Schmoll,et al.  Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei) , 2009, BMC Biology.

[25]  Monika Schmoll,et al.  Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina , 2009, Biotechnology for biofuels.

[26]  E. Tuomanen,et al.  Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae , 2009, Molecular microbiology.

[27]  X. F. Yang,et al.  A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi , 2009, Proceedings of the National Academy of Sciences.

[28]  A. Ram,et al.  Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori , 2008, Nature Protocols.

[29]  Matthias G. Steiger,et al.  Transcriptional Regulation of xyr1, Encoding the Main Regulator of the Xylanolytic and Cellulolytic Enzyme System in Hypocrea jecorina , 2008, Applied and Environmental Microbiology.

[30]  Robert L. Mach,et al.  Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) , 2008, Applied Microbiology and Biotechnology.

[31]  H. Parkington,et al.  Role of Ca2+ entry and Ca2+ stores in atypical smooth muscle cell autorhythmicity in the mouse renal pelvis , 2007, British journal of pharmacology.

[32]  J. Długoński,et al.  Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence , 2007, BioMetals.

[33]  J. Pittman Managing the manganese: molecular mechanisms of manganese transport and homeostasis. , 2005, The New phytologist.

[34]  M. Hall,et al.  Manganese Transport and Trafficking: Lessons Learned from Saccharomyces cerevisiae , 2005, Eukaryotic Cell.

[35]  K. Takegawa,et al.  Pmr1, a P‐type ATPase, and Pdt1, an Nramp homologue, cooperatively regulate cell morphogenesis in fission yeast: The importance of Mn2+ homeostasis , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[36]  L. T. Jensen,et al.  The Saccharomyces cerevisiae High Affinity Phosphate Transporter Encoded by PHO84 Also Functions in Manganese Homeostasis* , 2003, Journal of Biological Chemistry.

[37]  R. Rao,et al.  Packing Interactions between Transmembrane Helices Alter Ion Selectivity of the Yeast Golgi Ca2+/Mn2+-ATPase PMR1* , 2003, Journal of Biological Chemistry.

[38]  J. Cherry,et al.  Directed evolution of industrial enzymes: an update. , 2003, Current opinion in biotechnology.

[39]  L. T. Jensen,et al.  The many highways for intracellular trafficking of metals , 2003, JBIC Journal of Biological Inorganic Chemistry.

[40]  V. Culotta,et al.  Manganese Superoxide Dismutase in Saccharomyces cerevisiae Acquires Its Metal Co-factor through a Pathway Involving the Nramp Metal Transporter, Smf2p* , 2001, The Journal of Biological Chemistry.

[41]  E. O’Shea,et al.  Phosphate transport and sensing in Saccharomyces cerevisiae. , 2001, Genetics.

[42]  N. Jakubovics,et al.  Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. , 2001, Microbiology.

[43]  Adiel Cohen,et al.  The Family of SMF Metal Ion Transporters in Yeast Cells* , 2000, The Journal of Biological Chemistry.

[44]  R. Hassett,et al.  The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. , 2000, The Biochemical journal.

[45]  T. Woolf,et al.  Manganese Selectivity of Pmr1, the Yeast Secretory Pathway Ion Pump, Is Defined by Residue Gln783 in Transmembrane Segment 6 , 2000, The Journal of Biological Chemistry.

[46]  B. Herman,et al.  Measurement of intracellular calcium. , 1999, Physiological reviews.

[47]  S. Zeilinger,et al.  Ca2+-calmodulin antagonists interfere with xylanase formation and secretion in Trichoderma reesei. , 1998, Biochimica et biophysica acta.

[48]  R. Plemper,et al.  The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. , 1998, Molecular biology of the cell.

[49]  D. Eide,et al.  The ZRT2 Gene Encodes the Low Affinity Zinc Transporter in Saccharomyces cerevisiae* , 1996, The Journal of Biological Chemistry.

[50]  D. Eide,et al.  The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Eide,et al.  The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. , 1994, The Journal of biological chemistry.

[52]  R. Klausner,et al.  The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. , 1994, The Journal of biological chemistry.

[53]  G. Fink,et al.  The yeast Ca(2+)-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. , 1992, Molecular biology of the cell.

[54]  D. Stranks Influence of phenethyl alcohol and other organic solvents on cellulase production. , 1973, Canadian journal of microbiology.

[55]  M. Mandels,et al.  The Production of Cellulases , 1969 .

[56]  M. Mandels,et al.  INDUCTION OF CELLULASE IN TRICHODERMA VIRIDE AS INFLUENCED BY CARBON SOURCES AND METALS , 1957, Journal of bacteriology.

[57]  E. Espeso,et al.  Spatiotemporal dynamics of the calcineurin target CrzA. , 2017, Cellular signalling.

[58]  W. Qin,et al.  Effect of different carbon sources on cellulase production by Hypocrea jecorina (Trichoderma reesei) strains. , 2011, International journal of biochemistry and molecular biology.

[59]  Matthias G. Steiger,et al.  An accurate normalization strategy for RT-qPCR in Hypocrea jecorina (Trichoderma reesei). , 2010, Journal of biotechnology.

[60]  Bernard Henrissat,et al.  Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) , 2008, Nature Biotechnology.

[61]  S. Feske,et al.  The Ca2+–calcineurin–NFAT signalling pathway , 2007 .