Efficient parallel hierarchical clustering algorithms

Clustering of data has numerous applications and has been studied extensively. Though most of the algorithms in the literature are sequential, many parallel algorithms have also been designed. In this paper, we present parallel algorithms with better performance than known algorithms. We consider algorithms that work well in the worst case as well as algorithms with good expected performance.

[1]  Selim G. Akl,et al.  Matrix Operations Using Arrays with Reconfigurable Optical Buses* , 1996, Parallel Algorithms Appl..

[2]  Bernard Chazelle,et al.  A minimum spanning tree algorithm with inverse-Ackermann type complexity , 2000, JACM.

[3]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[4]  Rami G. Melhem,et al.  Space Multiplexing of Waveguides in Optically Interconnected Multiprocessor Systems , 1989, Comput. J..

[5]  Sartaj Sahni,et al.  Clustering on a Hypercube Multicomputer , 1991, IEEE Trans. Parallel Distributed Syst..

[6]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[7]  Shi-Jinn Horng,et al.  Efficient Parallel Algorithms for Hierarchical Clustering on Arrays with Reconfigurable Optical Buses , 2000, J. Parallel Distributed Comput..

[8]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[9]  David Peleg,et al.  The Power of Reconfiguration , 1991, J. Parallel Distributed Comput..

[10]  Clark F. Olson,et al.  Parallel Algorithms for Hierarchical Clustering , 1995, Parallel Comput..

[11]  Xiaobo Li,et al.  Parallel clustering algorithms , 1989, Parallel Comput..

[12]  Shi-Jinn Horng,et al.  Parallel hierarchical clustering algorithms on processor arrays with a reconfigurable bus system , 1997, Pattern Recognit..

[13]  Sartaj Sahni,et al.  Sorting, Selection, and Routing on the Array with Reconfigurable Optical Buses , 1997, IEEE Trans. Parallel Distributed Syst..

[14]  Xiaobo Li,et al.  Parallel Algorithms for Hierarchical Clustering and Cluster Validity , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Sanguthevar Rajasekaran,et al.  Optimal and Sublogarithmic Time Randomized Parallel Sorting Algorithms , 1989, SIAM J. Comput..

[16]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[17]  Ellis Horowitz,et al.  Computer Algorithms / C++ , 2007 .

[18]  Selim G. Akl,et al.  Integer Sorting and Routing in Arrays with Reconfigurable Optical Buses , 1998, Int. J. Found. Comput. Sci..

[19]  Viktor K. Prasanna,et al.  An Optimal Sorting Algorithm on Reconfigurable Mesh , 1995, J. Parallel Distributed Comput..

[20]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[21]  Seth Pettie,et al.  A Randomized Time-Work Optimal Parallel Algorithm for Finding a Minimum Spanning Forest , 1999, RANDOM-APPROX.

[22]  R. Prim Shortest connection networks and some generalizations , 1957 .

[23]  Sanguthevar Rajasekaran On the Euclidean Minimum Spanning Tree Problem , 2005 .

[24]  Hillel Gazit,et al.  An optimal randomized parallel algorithm for finding connected components in a graph , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).