Supercomputer simulations of transmon quantum computers

We develop a simulator for quantum computers composed of superconducting transmon qubits. The simulation model supports an arbitrary number of transmons and resonators. Quantum gates are implemented by time-dependent pulses. Nontrivial effects such as crosstalk, leakage to non-computational states, entanglement between transmons and resonators, and control errors due to the pulses are inherently included. The time evolution of the quantum computer is obtained by solving the time-dependent Schrodinger equation. The simulation algorithm shows excellent scalability on high-performance supercomputers. We present results for the simulation of up to 16 transmons and resonators. Additionally, the model can be used to simulate environments, and we demonstrate the transition from an isolated system to an open quantum system governed by a Lindblad master equation. We also describe a procedure to extract model parameters from electromagnetic simulations or experiments. We compare simulation results to experiments on several NISQ processors of the IBM Q Experience. We find nearly perfect agreement between simulation and experiment for quantum circuits designed to probe crosstalk in transmon systems. By studying common gate metrics such as the fidelity or the diamond distance, we find that they cannot reliably predict the performance of repeated gate applications or practical quantum algorithms. As an alternative, we find that the results from two-transmon gate set tomography have an exceptional predictive power. Finally, we test a protocol from the theory of quantum error correction and fault tolerance. We find that the protocol systematically improves the performance of transmon quantum computers in the presence of characteristic control and measurement errors.

[1]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[2]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[3]  Scott Aaronson,et al.  Quantum Computing since Democritus , 2013 .

[4]  M. Ansari Superconducting qubits beyond the dispersive regime , 2018, Physical Review B.

[5]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[6]  H De Raedt,et al.  Quantum theory as plausible reasoning applied to data obtained by robust experiments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[8]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[9]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[10]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[11]  G. Geh'er An elementary proof for the non-bijective version of Wigner's theorem , 2014, 1407.0527.

[12]  Sarah Sheldon,et al.  Characterizing errors on qubit operations via iterative randomized benchmarking , 2015, 1504.06597.

[13]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[14]  V. Paulsen Completely Bounded Maps and Operator Algebras , 2003 .

[15]  S. B. Kaplan,et al.  Proposed Experiments to Test the Foundations of Quantum Computing , 2016 .

[16]  R. Schoelkopf,et al.  Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles , 2014, Nature.

[17]  M. Beck Introductory Quantum Optics , 2005 .

[18]  I. L. Chuang,et al.  Approximate quantum error correction can lead to better codes , 1997 .

[19]  Charles Babbage On the Mathematical Powers of the Calculating Engine , 1982 .

[20]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[21]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[22]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[23]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[24]  Steven M. Girvin,et al.  Circuit QED: Superconducting Qubits Coupled to Microwave Photons , 2015 .

[25]  John Watrous,et al.  Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..

[26]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[27]  John V. Atanasoff,et al.  Computing Machine for the Solution of large Systems of Linear Algebraic Equations , 1982 .

[28]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[29]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[30]  Nobuyasu Ito,et al.  Massively parallel quantum computer simulator, eleven years later , 2018, Comput. Phys. Commun..

[31]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[32]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[33]  Chunhao Wang,et al.  Quantum-inspired sublinear classical algorithms for solving low-rank linear systems , 2018, ArXiv.

[34]  Alexander N. Korotkov,et al.  Operation and intrinsic error budget of a two-qubit cross-resonance gate , 2019, Physical Review A.

[35]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[36]  Klaus Molmer,et al.  Fidelity of quantum operations , 2007 .

[37]  K. Michielsen,et al.  Quantum spin dynamics as a model for quantum computer operation , 2002 .

[38]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[39]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[40]  M. Devoret Quantum Fluctuations in Electrical Circuits , 1997 .

[41]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[42]  Michael Martin Nieto,et al.  Phase and Angle Variables in Quantum Mechanics , 1968 .

[43]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[44]  Bei Zeng,et al.  Quantum State Tomography via Reduced Density Matrices. , 2016, Physical review letters.

[45]  F. Nori,et al.  Simulating quantum dynamical phenomena using classical oscillators: Landau-Zener-Stückelberg-Majorana interferometry, latching modulation, and motional averaging , 2018, Scientific Reports.

[47]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[48]  David W. Kribs,et al.  Computing stabilized norms for quantum operations via the theory of completely bounded maps , 2007, Quantum Inf. Comput..

[49]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[50]  Daniel A. Lidar,et al.  Quantum adiabatic machine learning , 2011, Quantum Inf. Process..

[51]  Brian Randell,et al.  The origins of digital computers: Selected papers , 1975 .

[52]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[53]  M. Katsnelson,et al.  Relaxation, thermalization, and Markovian dynamics of two spins coupled to a spin bath. , 2017, Physical review. E.

[54]  L. C. G. Govia,et al.  Bootstrapping quantum process tomography via a perturbative ansatz , 2019, Nature Communications.

[55]  Yoel Tikochinsky Consistency, amplitudes and probabilities in quantum theory , 2000 .

[56]  M. A. Luersen,et al.  A constrained, globalized, and bounded Nelder–Mead method for engineering optimization , 2004 .

[57]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[58]  Zheng An,et al.  Deep reinforcement learning for quantum gate control , 2019, EPL (Europhysics Letters).

[59]  Junan Lin,et al.  On the freedom in representing quantum operations , 2018, New Journal of Physics.

[60]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[61]  H. De Raedt,et al.  Testing quantum fault tolerance on small systems , 2018, Physical Review A.

[62]  P. Deglmann,et al.  Accuracy and Resource Estimations for Quantum Chemistry on a Near-term Quantum Computer. , 2018, Journal of chemical theory and computation.

[63]  Sarah Sheldon,et al.  Three-Qubit Randomized Benchmarking. , 2017, Physical review letters.

[64]  E. Guth,et al.  Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren , 1932 .

[65]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[66]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[67]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[68]  Alexander Olshevsky,et al.  Matrix P-norms are NP-hard to approximate if p ≠1,2,∞ , 2009 .

[69]  Richard Kueng,et al.  Comparing Experiments to the Fault-Tolerance Threshold. , 2015, Physical review letters.

[70]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[71]  J. Hamhalter,et al.  Linear algebraic proof of Wigner theorem and its consequences , 2017 .

[72]  An algebraic approach to Wigner's unitary-antiunitary theorem , 1998, math/9808033.

[73]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[74]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[75]  W. Stinespring Positive functions on *-algebras , 1955 .

[76]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[77]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[78]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[79]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[80]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[81]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[82]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[83]  Kristel Michielsen,et al.  Deterministic event-based simulation of quantum phenomena , 2005, Comput. Phys. Commun..

[84]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2018, npj Quantum Information.

[85]  Kristel Michielsen,et al.  Quantum theory as a description of robust experiments: Derivation of the Pauli equation , 2015, 1504.04944.

[86]  G. Vallone,et al.  Experimental quantum process tomography of non-trace-preserving maps , 2010, 1008.5334.

[87]  Jorge Nocedal,et al.  Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization” , 2011, TOMS.

[88]  Thomas Lippert,et al.  Massively parallel quantum computer simulator , 2006, Comput. Phys. Commun..

[89]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[90]  George Boole,et al.  The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning , 2007 .

[91]  Vrej Zarikian Alternating-projection algorithms for operator-theoretic calculations , 2006 .

[92]  R. D. Wolf Quantum Computation and Shor's Factoring Algorithm , 1999 .

[93]  Seth Lloyd,et al.  Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension , 2018, ArXiv.

[94]  G. Geh'er Wigner's theorem on Grassmann spaces , 2017, 1706.02329.

[95]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[96]  Amnon Ta-Shma,et al.  On the complexity of approximating the diamond norm , 2009, Quantum Inf. Comput..

[97]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[98]  Henrik Bruus,et al.  Many-body quantum theory in condensed matter physics - an introduction , 2004 .

[99]  S. Chaturvedi,et al.  Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics , 2008, 0808.0779.

[100]  James Demmel,et al.  Performance and Accuracy of LAPACK's Symmetric Tridiagonal Eigensolvers , 2008, SIAM J. Sci. Comput..

[101]  Thomas Alexander,et al.  Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments , 2018, ArXiv.

[102]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[103]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[104]  Hans De Raedt,et al.  Benchmarking the quantum approximate optimization algorithm , 2020, Quantum Inf. Process..

[105]  K. Kraus General state changes in quantum theory , 1971 .

[106]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[107]  Scott Aaronson,et al.  The Limits of Quantum Computers , 2007, CSR.

[108]  Dorian Krause,et al.  JURECA: Modular supercomputer at Jülich Supercomputing Centre , 2018, Journal of large-scale research facilities JLSRF.

[109]  Ewin Tang,et al.  A quantum-inspired classical algorithm for recommendation systems , 2018, Electron. Colloquium Comput. Complex..

[110]  de Hans Raedt,et al.  PRODUCT FORMULA METHODS FOR TIME-DEPENDENT SCHRODINGER PROBLEMS , 1990 .

[111]  Clarke,et al.  Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction. , 1985, Physical review letters.

[112]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[113]  Charles R. Johnson,et al.  Parametrization of the Matrix Symplectic Group and Applications , 2009, SIAM J. Matrix Anal. Appl..

[114]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[115]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[116]  H. Trotter On the product of semi-groups of operators , 1959 .

[117]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[118]  M. Katsnelson,et al.  Quantum theory does not need postulates , 2018 .

[119]  Dariusz Chruscinski,et al.  A Brief History of the GKLS Equation , 2017, Open Syst. Inf. Dyn..

[120]  Hans De Raedt,et al.  Benchmarking Supercomputers with the J\"ulich Universal Quantum Computer Simulator. , 2019 .

[121]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[122]  Karol Życzkowski,et al.  Dynamics beyond completely positive maps : some properties and applications , 2008 .

[123]  Jian Li,et al.  Entanglement of superconducting qubits via microwave fields: Classical and quantum regimes , 2008, 0803.0397.

[124]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[125]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[126]  A. Cleland,et al.  Quantum Mechanics of a Macroscopic Variable: The Phase Difference of a Josephson Junction , 1988, Science.

[127]  D. Russell,et al.  Parametrically Activated Entangling Gates Using Transmon Qubits , 2017, Physical Review Applied.

[128]  Easwar Magesan,et al.  First-principles analysis of cross-resonance gate operation , 2020, 2005.00133.

[129]  B. Jack Copeland The Modern History of Computing , 2006 .

[130]  F. Jin,et al.  Real-time simulation of flux qubits used for quantum annealing , 2019, Physical Review A.

[131]  J. Tsai,et al.  Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits , 2015 .

[132]  Franco Nori,et al.  Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates , 2012, 1201.3360.

[133]  Robin Harper,et al.  Fault-Tolerant Logical Gates in the IBM Quantum Experience. , 2018, Physical review letters.

[134]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[135]  Ryan LaRose,et al.  Overview and Comparison of Gate Level Quantum Software Platforms , 2018, Quantum.

[136]  Jay M. Gambetta,et al.  Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.

[137]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[138]  Barry C. Sanders,et al.  Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics , 2016, Neurocomputing.

[139]  Ying Li,et al.  Quantum computation with universal error mitigation on a superconducting quantum processor , 2018, Science Advances.

[140]  Relaxation of Josephson qubits due to strong coupling to two-level systems , 2009, 0905.2332.

[141]  F. Jin,et al.  Discrete-Event Simulation of an Extended Einstein-Podolsky-Rosen-Bohm Experiment , 2020, Frontiers in Physics.

[142]  F. Jin,et al.  Gate-error analysis in simulations of quantum computers with transmon qubits , 2017, 1709.06600.

[143]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[144]  M. Suzuki,et al.  Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems , 1976 .

[145]  Erik Nielsen,et al.  Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit , 2013, 1310.4492.

[146]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[147]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[148]  David Poulin,et al.  A small quantum computer is needed to optimize fault-tolerant protocols , 2017, Quantum Science and Technology.

[149]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[150]  D. Loss,et al.  Commutation relations for periodic operators , 1992 .

[151]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[152]  H. Naus,et al.  Consequences of unitary evolution of coupled qubit-resonator systems for stabilizing circuits in surface codes , 2018, 1811.09832.

[153]  H. De Raedt,et al.  Simulation of Quantum Computation: A deterministic event-based approach , 2005, quant-ph/0501140.

[154]  Joseph Emerson,et al.  Robust characterization of leakage errors , 2016 .

[155]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[156]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[157]  H. De Raedt,et al.  Quantum theory as a description of robust experiments: application to Stern-Gerlach and Einstein-Podolsky-Rosen-Bohm experiments , 2015, SPIE Optical Engineering + Applications.

[158]  John Preskill,et al.  Fault-tolerant quantum computation versus Gaussian noise , 2008, 0810.4953.

[159]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[160]  R. Feynman Simulating physics with computers , 1999 .

[161]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[163]  Kristel Michielsen,et al.  Support vector machines on the D-Wave quantum annealer , 2019, Comput. Phys. Commun..

[164]  Daniel Greenbaum,et al.  Introduction to Quantum Gate Set Tomography , 2015, 1509.02921.

[165]  Hans De Raedt,et al.  Product formula algorithms for solving the time dependent Schrödinger equation , 1987 .

[166]  R. T. Cox,et al.  The Algebra of Probable Inference , 1962 .

[167]  Jay M. Gambetta,et al.  Effective Hamiltonian models of the cross-resonance gate , 2018, Physical Review A.

[168]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[169]  Luis L. Sánchez-Soto,et al.  COMPLETE CHARACTERIZATION OF ARBITRARY QUANTUM MEASUREMENT PROCESSES , 1999 .

[170]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[171]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[172]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[173]  Ewin Tang,et al.  Quantum-inspired classical algorithms for principal component analysis and supervised clustering , 2018, ArXiv.

[174]  V. Bargmann NOTE ON WIGNER'S THEOREM ON SYMMETRY OPERATIONS , 1964 .

[175]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[177]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[178]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[179]  Uri Vool,et al.  Introduction to quantum electromagnetic circuits , 2016, Int. J. Circuit Theory Appl..

[180]  N. N. Bogoljubov On a new method in the theory of superconductivity , 1958 .

[181]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[182]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[183]  S. Girvin,et al.  Decoherence of superconducting qubits caused by quasiparticle tunneling , 2012, 1207.7084.

[184]  Barbara M. Terhal,et al.  Spectral quantum tomography , 2019, npj Quantum Information.

[185]  Christophe Vuillot,et al.  Universal bound on the cardinality of local hidden variables in networks , 2016, Quantum Inf. Comput..

[186]  Marcus Huber,et al.  Composite parameterization and Haar measure for all unitary and special unitary groups , 2011, 1103.3408.

[187]  M. Katsnelson,et al.  Quantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator , 2013, Optics & Photonics - Optical Engineering + Applications.

[188]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[189]  Roman Orus,et al.  Quantum computing for finance: Overview and prospects , 2018, Reviews in Physics.

[190]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[191]  Rupak Biswas,et al.  Readiness of Quantum Optimization Machines for Industrial Applications , 2017, Physical Review Applied.

[192]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[193]  Clemens Müller,et al.  Towards understanding two-level-systems in amorphous solids: insights from quantum circuits , 2017, Reports on progress in physics. Physical Society.

[194]  Daniel A. Lidar,et al.  Beyond complete positivity , 2015, Quantum Inf. Process..

[195]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[196]  C. Wie Bloch sphere model for two-qubit pure states , 2014, 1403.8069.

[197]  K. Cheng Theory of Superconductivity , 1948, Nature.

[198]  F. Jin,et al.  Long-Time Correlations in Single-Neutron Interferometry Data , 2020, 2005.11046.

[199]  Sabrina Hong,et al.  Demonstration of universal parametric entangling gates on a multi-qubit lattice , 2017, Science Advances.

[200]  David P. DiVincenzo,et al.  Analysis and Synthesis of Multi-Qubit, Multi-Mode Quantum Devices , 2015 .

[201]  Asher Peres,et al.  Quantum Theory Needs No ‘Interpretation’ , 2000 .

[202]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[203]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[204]  Luigi Frunzio,et al.  Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .

[205]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[206]  James E. Smith,et al.  A study of branch prediction strategies , 1981, ISCA '98.

[207]  Stefan Filipp,et al.  Analysis of a parametrically driven exchange-type gate and a two-photon excitation gate between superconducting qubits , 2017, 1708.02090.

[208]  D. Rhodes,et al.  A reactance theorem , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[209]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[210]  Charles Audet,et al.  Mesh-based Nelder–Mead algorithm for inequality constrained optimization , 2017, Computational Optimization and Applications.

[211]  Why quantum dynamics is linear , 2007, quant-ph/0702171.

[212]  P. Dirac The Quantum Theory of the Emission and Absorption of Radiation , 1927 .

[213]  G. S. Paraoanu,et al.  Microwave-induced coupling of superconducting qubits , 2006, 0801.4541.

[214]  J. Blackburn,et al.  A survey of classical and quantum interpretations of experiments on Josephson junctions at very low temperatures , 2016, 1602.05316.

[215]  C. Rigetti,et al.  Quantum gates for superconducting qubits , 2009 .

[216]  Jiaan Qi,et al.  Comparing the randomized benchmarking figure with the average infidelity of a quantum gate-set , 2018, International Journal of Quantum Information.

[217]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[218]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[219]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[220]  K. Jacobs Quantum Measurement Theory and its Applications , 2014 .

[221]  An alternative proof of Wigner theorem on quantum transformations based on elementary complex analysis , 2013, 1304.1376.

[222]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[223]  Dynamical Mappings of Density Operators in Quantum Mechanics. II. Time Dependent Mappings , 1962 .

[224]  Thomas Lippert,et al.  Benchmarking gate-based quantum computers , 2017, Comput. Phys. Commun..

[225]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[226]  Christopher A. Fuchs,et al.  Quantum Foundations in the Light of Quantum Information , 2001 .

[227]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[228]  Konrad Zuse Method for Automatic Execution of Calculations with the Aid of Computers , 1982 .

[229]  Daniel Gottesman,et al.  Quantum fault tolerance in small experiments , 2016, 1610.03507.

[230]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[231]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2005 .

[232]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[233]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[234]  David G. Cory,et al.  Tensor networks and graphical calculus for open quantum systems , 2011, Quantum Inf. Comput..

[235]  Noson S. Yanofsky,et al.  Quantum Computing for Computer Scientists , 2008 .

[236]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[237]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[238]  Joel J. Wallman,et al.  Bounding quantum gate error rate based on reported average fidelity , 2015, 1501.04932.

[239]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[240]  K. Meyer,et al.  Topics in Linear Theory , 2009 .

[241]  M. A. Rol,et al.  Active resonator reset in the nonlinear dispersive regime of circuit QED , 2016, 1604.00916.

[242]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[243]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local leakage faults , 2005, Quantum Inf. Comput..

[244]  H. C. Donker,et al.  Logical inference approach to relativistic quantum mechanics : Derivation of the Klein-Gordon equation , 2016, 1604.07265.

[245]  Mervin E. Muller,et al.  A note on a method for generating points uniformly on n-dimensional spheres , 1959, CACM.

[246]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[247]  S. Miyashita,et al.  Dynamics of open quantum spin systems: An assessment of the quantum master equation approach. , 2016, Physical review. E.

[248]  Ruediger Schack,et al.  Quantum Theory from Four of Hardy's Axioms , 2002 .

[249]  Richard Jozsa,et al.  Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..

[250]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[251]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[252]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[253]  Vaidman,et al.  Error prevention scheme with four particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[254]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[255]  H. De Raedt,et al.  Computational Methods for Simulating Quantum Computers , 2004 .

[256]  J. Colpa Diagonalization of the quadratic boson hamiltonian , 1978 .

[257]  N. Didier,et al.  Analytical modeling of parametrically-modulated transmon qubits , 2017, 1706.06566.

[258]  Jay M. Gambetta,et al.  Quantification and characterization of leakage errors , 2017, 1704.03081.

[259]  Min Raj Lamsal Quantum Optics: An Introduction , 2011 .

[261]  D. DiVincenzo,et al.  Schrieffer-Wolff transformation for quantum many-body systems , 2011, 1105.0675.

[262]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[263]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[264]  A new proof of Wigner's theorem , 2004 .

[265]  J. Schrieffer,et al.  Relation between the Anderson and Kondo Hamiltonians , 1966 .

[266]  Clarke,et al.  Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. , 1987, Physical review. B, Condensed matter.

[267]  J. Blackburn,et al.  Tomography and entanglement in coupled Josephson junction qubits. , 2010, Physical review letters.

[268]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[269]  Kivelson,et al.  Bogoliubov quasiparticles, spinons, and spin-charge decoupling in superconductors. , 1990, Physical review. B, Condensed matter.

[270]  C. Fuchs Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.

[271]  Zijun Chen,et al.  Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. , 2015, Physical review letters.

[272]  Sparsh Mittal A survey of techniques for dynamic branch prediction , 2018, Concurr. Comput. Pract. Exp..

[273]  R. Dreizler,et al.  Density Functional Theory: An Advanced Course , 2011 .

[274]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[275]  Daniel J. Egger,et al.  Qiskit pulse: programming quantum computers through the cloud with pulses , 2020, Quantum Science and Technology.

[276]  de Raedt H,et al.  Fast algorithm for finding the eigenvalue distribution of very large matrices , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[277]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[278]  Hans De Raedt,et al.  Quantum Computer Emulator , 2000 .

[279]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[280]  F. Wilhelm,et al.  Counteracting systems of diabaticities using DRAG controls: The status after 10 years , 2018, EPL (Europhysics Letters).

[281]  J. Valatin Comments on the theory of superconductivity , 1958 .

[282]  Joel J. Wallman Bounding experimental quantum error rates relative to fault-tolerant thresholds , 2015 .

[283]  David P. DiVincenzo,et al.  Blackbox quantization of superconducting circuits using exact impedance synthesis , 2014, 1403.7341.

[284]  M. Suzuki,et al.  Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics , 1985 .

[285]  M. W. Johnson,et al.  Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.

[286]  L. Frunzio,et al.  Quasiparticle relaxation of superconducting qubits in the presence of flux. , 2011, Physical review letters.

[287]  W. Culver On the existence and uniqueness of the real logarithm of a matrix , 1966 .

[288]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[289]  Dennis Willsch,et al.  Discrete-Event Simulation of Quantum Walks , 2020, Frontiers in Physics.

[290]  Teodoro Collin RANDOM MATRIX THEORY , 2016 .

[291]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[292]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[293]  J. Blackburn,et al.  Investigation of low temperature quantum crossover in Josephson junctions , 2017, 1706.03709.

[294]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[295]  T. Neumann Probability Theory The Logic Of Science , 2016 .

[296]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[297]  Dorian Krause,et al.  JUWELS: Modular Tier-0/1 Supercomputer at Jülich Supercomputing Centre , 2019, Journal of large-scale research facilities JLSRF.

[298]  Xia Yang,et al.  64-qubit quantum circuit simulation. , 2018, Science bulletin.

[299]  Kaveh Khodjasteh,et al.  Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls , 2009, 0906.0525.

[300]  Niels Grønbech-Jensen,et al.  Classical analogs for Rabi-oscillations, Ramsey-fringes, and spin-echo in Josephson junctions , 2007, 0708.3701.

[301]  J. Gambetta,et al.  Simple Impedance Response Formulas for the Dispersive Interaction Rates in the Effective Hamiltonians of Low Anharmonicity Superconducting Qubits , 2017, IEEE Transactions on Microwave Theory and Techniques.

[302]  M. Devoret,et al.  Quantum coherence with a single Cooper pair , 1998 .

[303]  Steve Mullett,et al.  Read the fine print. , 2009, RN.

[304]  Quantum decoherence scaling with bath size: Importance of dynamics, connectivity, and randomness , 2013, 1301.0077.

[305]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[306]  Travis S. Humble,et al.  Establishing the quantum supremacy frontier with a 281 Pflop/s simulation , 2019, Quantum Science and Technology.