Response time of nanostructured relative humidity sensors

Abstract Capacitive relative humidity (RH) sensors were fabricated by coating countersunk interdigitated electrode substrates with nanostructured TiO2 films produced using glancing angle deposition. Areal capacitance increased from ∼ 1  nF cm−2 to ∼ 800  nF cm−2 as relative humidity was increased from ∼ 2 % RH and 95% RH. For films deposited at 81 ° and with a thickness below 4  μ m, response time was ( 162 ± 4 ) ms  μ m−1. Response times increased from 64 ms to 1440 ms as film thickness increased from 280 nm to 8.5  μ m. The linear dependence of response time with film thickness indicates that device response time is dominated by surface adsorption. Response time decreased with increasing deposition angle, with a slope of ( − 15.2 ± 1.6 ) ms degree−1 for the adsorption data, and ( − 17.3 ± 2.5 ) ms degree−1 for the desorption data. The optimum operating range of the sensors depends on deposition angle, and can be tuned to different ranges to match application needs.

[1]  Eiji Itoh,et al.  Improvement of Sensitivity and Response Speed of Capacitive Type Humidity Sensor Using Partially Fluorinated Polyimide Thin Film , 2007 .

[2]  M. Brett,et al.  Impact of morphology on high-speed humidity sensor performance , 2006, IEEE Sensors Journal.

[3]  K. G. Ong,et al.  Highly Ordered Nanoporous Alumina Films: Effect of Pore Size and Uniformity on Sensing Performance , 2002 .

[4]  M. Brett,et al.  Photocatalytic regeneration of interdigitated capacitor relative humidity sensors fabricated by glancing angle deposition , 2008 .

[5]  S. Gevorgian,et al.  CAD models for multilayered substrate interdigital capacitors , 1996 .

[6]  Enrico Traversa,et al.  Ceramic sensors for humidity detection: the state-of-the-art and future developments , 1995 .

[7]  P. Salatino,et al.  Modelling diffusion-limited gasification of carbons by branching pore models , 1996 .

[8]  S. Fonash,et al.  A rapid-response, high-sensitivity nanophase humidity sensor for respiratory monitoring , 2004, IEEE Electron Device Letters.

[9]  Kensall D. Wise,et al.  A high-speed capacitive humidity sensor with on-chip thermal reset , 2000 .

[10]  J. Fagan,et al.  Reliability and reproducibility of ceramic sensors. III: Humidity sensors , 1993 .

[11]  S. Fonash,et al.  Biomedical/analytical applications of deposited nanostructured Si films , 2005 .

[12]  Nathan S. Lewis,et al.  Characterization of the temporal response profile of carbon black-polymer composite detectors to volatile organic vapors , 2003 .

[13]  Chi-En Lu,et al.  Humidity Sensors: A Review of Materials and Mechanisms , 2005 .

[14]  Noboru Yamazoe,et al.  Humidity sensors: Principles and applications , 1986 .

[15]  E. Zdankiewicz,et al.  Micromachined water vapor sensors: a review of sensing technologies , 2001 .

[16]  Claude Pellet,et al.  Comparison of three humidity sensors for a pulmonary function diagnosis microsystem , 2002 .

[17]  R. Igreja,et al.  Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure , 2004 .

[18]  Hélène Debéda,et al.  Evidence of a correlation between the non-linearity of chemical sensors and the asymmetry of their response and recovery curves , 2005 .

[19]  S. Gevorgian,et al.  Modelling of thin-film HTS/ferroelectric interdigital capacitors , 1996 .

[20]  M. Brett,et al.  Nanostructured Metal Oxide Thin Films for Humidity Sensors , 2008, IEEE Sensors Journal.

[21]  Z. M. Rittersma,et al.  Recent achievements in miniaturised humidity sensors—a review of transduction techniques , 2002 .

[22]  B. M. Wright,et al.  Measurement of respiratory rate in the newborn. , 1983, British medical journal.

[23]  Jeremy C. Sit,et al.  Nanostructured gradient index optical filter for high-speed humidity sensing , 2006 .

[24]  Michael J. Brett,et al.  Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films , 2007 .

[25]  Michael J. Brett,et al.  High-Speed Porous Thin Film Humidity Sensors , 2002 .

[26]  C. Kolb,et al.  Spectroscopic water vapor sensor for rapid response measurements of humidity in the troposphere , 2002 .

[27]  Diffusion and reaction in a fractal catalyst pore—II. Diffusion and first-order reaction , 1995 .

[28]  J. Berg,et al.  Durable microfabricated high-speed humidity sensors. , 2004, Analytical chemistry.

[29]  M.J.A.M. van Putten,et al.  Multisensor microsystem for pulmonary function diagnostics , 2002 .

[30]  T. Tatara,et al.  An Apnea Monitor Using a Rapid-Response Hygrometer , 2004, Journal of Clinical Monitoring.

[31]  Gwo-Bin Lee,et al.  Humidity Sensors: A Review , 2005 .

[32]  M. Brett,et al.  Capacitive Humidity Sensors With High Sensitivity and Subsecond Response Times , 2007, IEEE Sensors Journal.

[33]  Wojtek Wlodarski,et al.  Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4 , 2000 .

[34]  Y. Li,et al.  A novel highly reversible humidity sensor based on poly(2-propyn-2-furoate) , 2002 .

[35]  Michael J. Brett,et al.  Nanostructure engineering in porous columnar thin films: recent advances , 2007 .