Greenland Ice Sheet sensitivity and sea level contribution in the mid-Pliocene warm period – Pliocene Ice Sheet Model Intercomparison Project PLISMIP

The understanding of the nature and behavior of ice sheets in past warm periods is important to constrain the potential impacts of future climate change. The mid-Pliocene Warm Period (2.97 to 3.29 Ma) has global temperatures similar to those projected for future climates, nevertheless Pliocene ice locations and extents are still poorly constrained. We present results from the efforts to simulate mid-Pliocene Greenland ice sheets by means of the international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP). We compare the performance of existing numerical ice sheet models in simulating modern control and mid-Pliocene ice sheets by a suite of sensitivity experiments guided by available proxy records. We quantify equilibrated ice sheet volume on Greenland, identifying a potential range in sea level contributions from warm Pliocene scenarios. A series of statistical measures are performed to quantify the confidence of simulations with focus on inter-model and inter-scenario differences. We find that Pliocene Greenland ice sheets are less sensitive to differences in ice sheet model configurations and internal physical quantities, than to changes in imposed climate forcing. We conclude that Pliocene ice was most likely to be limited to highest elevations in East and South as simulated with the highest confidence and by synthesizing available regional proxies, although extents of those ice caps need to be further constrained by using a range of GCM climate forcings.

[1]  R. DeConto,et al.  Impact of reduced Arctic sea ice on Greenland ice sheet variability in a warmer than present climate , 2014 .

[2]  B. Boer,et al.  A continuous simulation of global ice volume over the past 1 million years with 3-D ice-sheet models , 2013, Climate Dynamics.

[3]  R. S. W. van de Wal,et al.  Coupled regional climate–ice-sheet simulation shows limited Greenland ice loss during the Eemian , 2013 .

[4]  D. Lunt,et al.  The role of vegetation feedbacks on Greenland glaciation , 2013, Climate Dynamics.

[5]  A. Kuijpers,et al.  Only 5 southern Greenland shelf edge glaciations since the early Pliocene , 2013, Scientific Reports.

[6]  Willy P Aspinall,et al.  An expert judgement assessment of future sea level rise from the ice sheets , 2013 .

[7]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[8]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[9]  Andrew A. Kulpecz,et al.  High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation , 2012 .

[10]  B. Otto‐Bliesner,et al.  Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models , 2012 .

[11]  R. DeConto,et al.  Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design , 2011 .

[12]  N. Reeh,et al.  Snapshots of the Greenland ice sheet configuration in the Pliocene to early Pleistocene , 2011, Journal of Glaciology.

[13]  J. Ettema,et al.  Significant contribution of insolation to Eemian melting of the Greenland ice sheet , 2011 .

[14]  G. Liston,et al.  Greenland ice sheet surface melt extent and trends: 1960–2010 , 2011, Journal of Glaciology.

[15]  Steven J. Pickering,et al.  Sensitivity of Pliocene Ice Sheets to Orbital Forcing , 2011 .

[16]  W. Patterson,et al.  Climate variability in the Early Pliocene Arctic: Annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada , 2011 .

[17]  Hugues Goosse,et al.  Response of the Greenland and Antarctic Ice Sheets to Multi-Millennial Greenhouse Warming in the Earth System Model of Intermediate Complexity LOVECLIM , 2011 .

[18]  Maureen E. Raymo,et al.  Departures from eustasy in Pliocene sea-level records , 2011 .

[19]  R. DeConto,et al.  Late Pliocene to Pleistocene sensitivity of the Greenland Ice Sheet in response to external forcing and internal feedbacks , 2011 .

[20]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[21]  Andy Ridgwell,et al.  Are there pre-Quaternary geological analogues for a future greenhouse warming? , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  A. Ganopolski,et al.  Multistability and critical thresholds of the Greenland ice sheet , 2010 .

[23]  Jason Lowe,et al.  Thresholds for irreversible decline of the Greenland ice sheet , 2010 .

[24]  I. C. Rutt,et al.  Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change , 2010 .

[25]  A. Weaver,et al.  A new coupled ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions , 2010 .

[26]  Richard B. Alley,et al.  History of the Greenland Ice Sheet: paleoclimatic insights , 2010 .

[27]  David Pollard,et al.  A retrospective look at coupled ice sheet–climate modeling , 2010 .

[28]  A. Mackensen,et al.  Alkenone and boron based Pliocene pCO2 records , 2010 .

[29]  A. Mackensen,et al.  Alkenone and boron based Oligocene pCO2 records, supplement to: Seki, Osamu; Foster, Gavin L; Schmidt, Daniela N; Mackensen, Andreas; Kawamura, Kimitaka; Pancost, Richard D (2010): Alkenone and boron based Pliocene pCO2 records. Earth and Planetary Science Letters, 292(1-2), 201-211 , 2010 .

[30]  K. Lambeck,et al.  The sea‐level conundrum: case studies from palaeo‐archives , 2010 .

[31]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[32]  Daniel J. Lunt,et al.  Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2) , 2009 .

[33]  Lei Wang,et al.  Surface melt area variability of the Greenland ice sheet: 1979–2008 , 2009 .

[34]  A. Payne,et al.  The Glimmer community ice sheet model , 2009 .

[35]  T. Herbert,et al.  High‐amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period , 2009 .

[36]  R. DeConto,et al.  A coupled ice-sheet/ice-shelf/sediment model applied to a marine-margin flowline: forced and unforced variations , 2009 .

[37]  D. Lunt,et al.  The Arctic cryosphere in the mid-Pliocene and the future , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Eric Rignot,et al.  Mass balance of the Greenland ice sheet from 1958 to 2007 , 2008 .

[39]  Daniel J. Lunt,et al.  Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels , 2008, Nature.

[40]  C. Hillaire‐Marcel,et al.  Natural Variability of Greenland Climate, Vegetation, and Ice Volume During the Past Million Years , 2008, Science.

[41]  Uwe Mikolajewicz,et al.  Long-term ice sheet–climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model , 2008 .

[42]  Thomas L. Mote,et al.  Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007 , 2007 .

[43]  James Haile,et al.  Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland , 2007, Science.

[44]  C. Ritz,et al.  Modelling the Early Weichselian Eurasian Ice Sheets: role of ice shelves and influence of ice-dammed lakes , 2007 .

[45]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[46]  A. Ballantyne,et al.  Pliocene Arctic temperature constraints from the growth rings and isotopic composition of fossil larch , 2006 .

[47]  Marie-Louise Siggaard-Andersen,et al.  A new Greenland ice core chronology for the last glacial termination , 2006 .

[48]  J. Overpeck,et al.  Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise , 2006, Science.

[49]  J. Overpeck,et al.  Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation , 2006, Science.

[50]  A. Ganopolski,et al.  Multistability and hysteresis in the climate‐cryosphere system under orbital forcing , 2005 .

[51]  R. Alley,et al.  Ice-Sheet and Sea-Level Changes , 2005, Science.

[52]  Jonathan M. Gregory,et al.  Elimination of the Greenland ice sheet in a high-CO2 climate , 2005 .

[53]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[54]  R. DeConto,et al.  Hysteresis in Cenozoic Antarctic ice-sheet variations , 2005 .

[55]  Jason E. Box,et al.  Greenland ice sheet surface mass balance 1991–2000: Application of Polar MM5 mesoscale model and in situ data , 2004 .

[56]  Daniel J. Lunt,et al.  Effects of a melted greenland ice sheet on climate, vegetation, and the cryosphere , 2004 .

[57]  Jonathan M. Gregory,et al.  Climatology: Threatened loss of the Greenland ice-sheet , 2004, Nature.

[58]  J. Gregory,et al.  Climatic Impact of a Greenland Deglaciation and Its Possible Irreversibility , 2003 .

[59]  J. Box Survey of Greenland instrumental temperature records: 1873–2001 , 2002 .

[60]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[61]  André Berger,et al.  An Exceptionally Long Interglacial Ahead? , 2002, Science.

[62]  E. Jansen,et al.  Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma) – ice-rafted detritus evidence , 2002 .

[63]  K. S. John,et al.  The late Miocene to Pleistocene ice‐rafting history of southeast Greenland , 2002 .

[64]  Sivaprasad Gogineni,et al.  A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors , 2001 .

[65]  Catherine Ritz,et al.  Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region , 2001 .

[66]  O. Bennike,et al.  Late Pliocene Greenland: The Kap Kobenhavn Formation in North Greenland , 2001 .

[67]  Dorthe Dahl-Jensen,et al.  Oxygen isotope and palaeotemperature records from six Greenland ice‐core stations: Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP , 2001 .

[68]  Jonathan L. Bamber,et al.  A new, high‐resolution digital elevation model of Greenland fully validated with airborne laser altimeter data , 2001 .

[69]  E. Jansen,et al.  Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr , 2000 .

[70]  S. Marshall,et al.  Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet , 2000, Nature.

[71]  Philippe Huybrechts,et al.  The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming , 1999 .

[72]  K. Mosegaard,et al.  Past temperatures directly from the greenland ice sheet , 1998, Science.

[73]  David Pollard,et al.  Greenland and Antarctic Mass Balances for Present and Doubled Atmospheric CO2 from the GENESIS Version-2 Global Climate Model , 1997 .

[74]  C. Ritz,et al.  Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last climatic cycle , 1996 .

[75]  R. S. Thompson,et al.  Middle Pliocene vegetation: reconstructions, paleoclimatic inferences, and boundary conditions for climate modeling , 1996 .

[76]  S. Baum,et al.  Is the Greenland Ice Sheet bistable , 1995 .

[77]  M. Loutre Greenland Ice Sheet over the next 5000 years , 1995 .

[78]  D. Willard Palynological record from the North Atlantic region at 3 Ma: vegetational distribution during a period of global warmth , 1994 .

[79]  J. Beget,et al.  Seven Million Years of Glaciation in Greenland , 1994, Science.

[80]  R. Hindmarsh Modelling the dynamics of ice sheets , 1993 .

[81]  T. Cronin,et al.  Climatic significance of the ostracode fauna from the Pliocene Kap Kobenhavn Formation, north Greenland , 1991 .

[82]  A. Vernal,et al.  Late Pliocene to Holocene Palynostratigraphy at ODP Site 645, Baffin Bay , 1989 .

[83]  A. Vernal,et al.  Pliocene and Pleistocene Palynostratigraphy at ODP Sites 646 and 647, Eastern and Southern Labrador Sea , 1989 .

[84]  H. Dowsett,et al.  Mid-Piacensian mean annual sea surface temperature: an analysis for data-model comparisons , 2010 .

[85]  Mark Williams,et al.  The PRISM3D paleoenvironmental reconstruction , 2010 .

[86]  Zhonghui Liu,et al.  High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations , 2010 .

[87]  Corinne Le Quéré,et al.  Observations: Oceanic Climate Change and Sea Level , 2007 .

[88]  P. Valdes,et al.  Characterizing ice sheets during the Pliocene: evidence from data and models , 2007 .

[89]  A. Abe‐Ouchi,et al.  Thermal structure of Dome Fuji and east Dronning Maud Land, Antarctica, simulated by a three-dimensional ice-sheet model , 2004, Annals of Glaciology.

[90]  齋藤 冬樹 Development of a three dimensional ice sheet model for numerical studies of Antarctic and Greenland ice sheet , 2002 .

[91]  John S. Woollen,et al.  NCEP-DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society . , 2002 .

[92]  Ralf Greve,et al.  On the Response of the Greenland Ice Sheet to Greenhouse Climate Change , 2000 .

[93]  N. Reeh,et al.  History of a Stable Ice MARGIN—EAST Greenland during the Middle and Upper Pleistocene , 1998 .

[94]  J. Thiede,et al.  Cenozoic Arctic gateway paleoclimate variability : Indications from changes in coarse-fraction composition , 1996 .

[95]  A. Ohmura,et al.  New precipitation and accumulation maps for Greenland , 1991, Journal of Glaciology.

[96]  O. Bennike,et al.  Forest-Tundra Neighbouring the North Pole: Plant and Insect Remains from the Plio-Pleistocene Kap København Formation, North Greenland , 1990 .

[97]  N. Reeh,et al.  Mass Balance of the Greenland Ice Sheet at Dye 3 , 1985, Journal of Glaciology.